
 Direct Access File System
Application Programming Interface

(DAFS API)

Version: 1.0
Revision Date: November 17, 2001

Document Status

The DAFS Application Programming Interface, Version 1.0 was created by the
DAFS Collaborative.

This document is provided "As Is" with no warranties whatsoever, including any war-
ranty of merchantability, fitness for any particular purpose, or any warranty otherwise
arising out of any proposal, specification or sample.

No license, expressed or implied, by estoppel or otherwise, to any intellectual prop-
erty rights is granted herein.

Network Appliance disclaims all liability, including liability for infringement of any
property rights, relating to use of information in this specification. Network Appli-
ance does not warrant or represent that such use will not infringe such rights.

Nothing in this document constitutes a guarantee, warranty, or license, expressed or
implied. Network Appliance disclaims liability for all such guarantees, warranties,
and licenses, including but not limited to: fitness for a particular purpose; merchant-
ability; non-infringement of intellectual property or other rights of any third party or
of Network Appliance; indemnity; and all others. The reader is advised that third par-
ties may have intellectual property rights which may be relevant to this document and
the technologies discussed herein, and is advised to seek the advice of competent
legal counsel, without obligation to Network Appliance.

Copyright © Network Appliance 2000 - 2001

DAFS API Definition Version: 1.0 Revision Date: November 17, 2001

Network Appliance, Inc Page 2

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

Chapter 1: Overview and Introduction 1
1.1 Overview... 1

1.1.1 Introduction .. 1

1.2 Attributes of the API.. 1
1.2.1 Richness .. 1

1.2.2 Performance .. 2

1.2.3 Integration with conventional I/O subsystem 2

1.2.4 Balance.. 2

1.3 Details to be addressed by the API .. 3
1.3.1 Memory registration... 3

1.3.2 Sync/Async .. 3

1.3.3 Protocol primitives ... 4

Chapter 2: DAFS Provider Interface Architecture 5
2.1 Overview... 5

2.2 API Relationship to the Native Operating System I/O Subsystem7

2.3 API Relationship to Transport Provider and DAFS Protocol... 7
2.3.1 Primary API to DAFS Provider... 7

2.3.1.1 Abstracting Transport-Level Resources 7
2.3.1.2 Abstracting DAFS Protocol Structures................ 8

2.3.2 Secondary APIs to Import/Export Transport Provider Resources8

2.3.3 Lack of Secondary APIs to expose Raw DAFS Protocol operations9

2.4 Server Connection Management .. 10

2.5 Completion Groups... 10

2.6 Memory Management... 11

2.7 Authorization and Credentials .. 12

2.8 File Management .. 12

2.9 File Namespace.. 12

2.10 File Sharing .. 13

2.11 Attribute Handling ... 14

Appendix A: Design Background on Completion Groups 15

Appendix B: Design Background on Attribute Handling 16

Appendix C: Discussion of DAFS Provider Caching 17

DAFS API Definition Version: 1.0 Overview and Introduction Revision Date: November 17, 2001

Network Appliance, Inc Page 1

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

CHAPTER 1: OVERVIEW AND INTRODUCTION

1.1 OVERVIEW

This document specifies an Applications Programming Interface (API) for
the Direct Access File System (DAFS). DAFS is a new protocol for “local
file sharing” over advanced memory-to-memory networks such as the Vir-
tual Interface (VI) Architecture and Infiniband. The DAFS Protocol Speci-
fication is presented in a separate document.

This version of the API specification contains a set of interfaces that cap-
ture the basic file operations (open, close, read, write) in DAFS. It will grow
over time to include the full richness of DAFS including locking, fencing,
and chaining.

It is intended that this will be a common, portable API, covering equally
well (at a minimum) POSIX-compliant and Win32-compliant systems.

1.1.1 INTRODUCTION

A main goal of the DAFS API is enabling the richness of DAFS for the ap-
plication developer, while concurrently enabling maximum performance.
A second goal is to allow for the use of alternative transports as they de-
velop. Finally, to be most useful, the right blend of exposure and hiding of
internal complexity must be achieved.

1.2 ATTRIBUTES OF THE API
The DAFS API provides a convenient programmatic interface that allows
applications to securely access files over low-latency, high-throughput
networks. The interface is simplified and file-oriented, hiding many of the
details of the DAFS protocol.

1.2.1 RICHNESS

The DAFS protocol provides a rich and comprehensive set of operations
for manipulating, reading and writing, and synchronizing file objects on a
server.

To the protocol, the DAFS API adds session and local resource manage-
ment, signalling, flow control, convenient interfaces to direct the nu-
merous modes of DAFS data transfers, and many others. These additions
do not supersede the DAFS protocol interface. Instead, they form the
foundation on which the protocol can be easily directed and employed by
the application programmer.

DAFS API Definition Version: 1.0 Overview and Introduction Revision Date: November 17, 2001

Network Appliance, Inc Page 2

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

The DAFS API will also address the case where the DAFS server may
make a request of the client, for example lock management or flow con-
trol. This important subset of the DAFS protocol requires careful imple-
mentation on the client, and the DAFS API is intended to substantially
support this need.

1.2.2 PERFORMANCE

A significant performance advantage can be obtained by programs which
do not transition into the kernel for network data transfer. The DAFS API
is intended to be implemented completely in user space, except of course
for making necessary requests of transport provider-dependent kernel
support during connection setup and teardown, event management, and
so on.

Combined with kernel avoidance and a careful event strategy, this can re-
sult in full performance up to the capabilities of the hardware of the ma-
chine, the network and of the connected DAFS server.

Therefore, an application employing the DAFS API can expect significant
advantages over a kernel-based implementation, such as an NFS client
over a traditional high-speed TCP connection.

1.2.3 INTEGRATION WITH CONVENTIONAL I/O SUBSYSTEM

Since this API is completely new and is being constructed from scratch,
transparent interoperation with existing file access APIs is not planned. In
fact, to provide any measure of transparency would require compromising
performance. Therefore it is not a requirement to do so. However, the
DAFS API is intended to be file-like in nature, and to make the effort of cre-
ating or moving an application to be DAFS-enabled a relatively straight-
forward process.

At the lower layer, it is a goal for the DAFS Provider to operate over a va-
riety of transports. While internal changes must be in place to use any new
transport, it is important the fundamental DAFS API be stable across all
instances.

1.2.4 BALANCE

As with any API, a decision must be made to balance usefulness and
complexity. It is a goal of this specification to provide the “right” balance
of what the API exposes and hides from the application. It is expected that
this balance will be the subject of much discussion.

A primary goal is to encapsulate transport-specific details and features to
the extent possible. For example, when running over a compliant VI im-
plementation, reliable delivery semantics are required. Setting this at-
tribute will be performed automatically by the DAFS library. Likewise,

DAFS API Definition Version: 1.0 Overview and Introduction Revision Date: November 17, 2001

Network Appliance, Inc Page 3

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

since the interface to an appropriate transport may change over time,
those transport-specific details should be handled behind the scenes.

However, there are valid reasons to want certain transport-specific details
to be accessible to the application. One example is memory registration,
for transports which require this to be done up-front. Since NIC resources
(such as TPT slots) are likely to be scarce, an application might reason-
ably want to register memory once, subsequently using it to back both
DAFS buffers and descriptors for use with the native transport interface.

While it should be possible to use the DAFS API without knowledge of
what is going on under the hood, these conflicting goals argue for the in-
clusion of a set of interfaces that allow the extraction (and perhaps
tweaking) of various transport-specific bits of data. Further complicating
the design of these interfaces is the goal of being able to implement DAFS
on top of a variety of low-latency, high-throughput transports.

1.3 DETAILS TO BE ADDRESSED BY THE API

1.3.1 MEMORY REGISTRATION

Applications which are being coded to the DAFS API are recommended
to pre-register memory buffers for DAFS data transfer operations. This im-
portant difference from POSIX and Win32 enables the performance ad-
vantages of DAFS by removing memory wiring operations and their user-
to-kernel transitions from the critical I/O paths. While the DAFS Provider
can register and bind application memory as needed, the pre-registration
enables the Provider to most effectively manage scarce hardware re-
sources for maximum efficiency and performance.

Memory regions may be registered one or more times by the application,
though there is no good reason to do this, and may waste scarce re-
sources. Once registered, such memory can be used for any valid pur-
pose.

1.3.2 SYNC/ASYNC

The DAFS API will be fundamentally asynchronous. Asynchronous inter-
faces will be the most direct method for supporting the asynchronous ca-
pabilities of the DAFS protocol, and will allow maximum throughput. The
synchronous interfaces offer ease of application porting and low latency,
but suffer from lower transport utilization.

A method of indicating the desired asynchronous I/O completion at I/O ini-
tiation time is an important element of the DAFS API. By specifying pre-
cisely where a completion will occur, the specific event may be awaited by
the application if desired. Or, events may be received in completion order
by application-defined groups. This feature of the DAFS API will allow ap-
plications to most efficiently use communications channels for all pur-

DAFS API Definition Version: 1.0 Overview and Introduction Revision Date: November 17, 2001

Network Appliance, Inc Page 4

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

poses, without having to invoke additional overhead at I/O completion
time.

1.3.3 PROTOCOL PRIMITIVES

The DAFS System Development Kit (SDK) provides a set of low-level in-
terfaces for encoding and decoding raw DAFS requests and responses
over the wire. These interfaces are not a part of the DAFS API, but do pro-
vide a way for vendors to get up and running quickly.

DAFS API Definition Version: 1.0 DAFS Provider Interface Architecture Revision Date: November 17, 2001

Network Appliance, Inc Page 5

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

CHAPTER 2: DAFS PROVIDER INTERFACE ARCHITECTURE

2.1 OVERVIEW

The overall Architecture for the DAFS Provider and its interactions with
both the DAFS Consumer and memory-to-memory transport provider is
shown in Figure 1.

The DAFS Provider has four subcomponents:

• Client DAFS File System Engine. This component is responsible
for interpreting the Primary DAFS Provider API. This includes
both Consumer interfaces for file-level operations and transport
resource management.

• DAFS SDK/DAFSgen protocol stubs. This component is respon-
sible for marshalling and unmarshalling parameters into the on-
the-wire DAFS Protocol format.

• Transport Resource Management. This component is responsi-
ble for management of DAFS transport resources in a relatively
transport-independent manner.

• DAFS Transport engine. This component is responsible for map-
ping high level operations on to the specific APIs offered by a giv-
en memory-to-memory transport provider.

There are two separate APIs shown that the DAFS Consumer may use to
interact with the DAFS Provider.

• Primary DAFS Provider API. This is the API defined by this docu-
ment. It is in interface that is independent of the underlying mem-
ory-to-memory transport(s) in use. It provides an abstract file-like
interface to the DAFS protocol, with some additional operations
for resource management.

• Secondary DAFS Provider API. There are multiple instances of
this API--one for each Transport Provider. Instances of this API
for important transports (such as VI and Infiniband) will be incor-
porated as non-normative appendices to this Specification.

DAFS API Definition Version: 1.0 DAFS Provider Interface Architecture Revision Date: November 17, 2001

Network Appliance, Inc Page 6

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

.

Figure 1 DAFS Provider Architecture

Primary DAFS Provider API

DAFS SDK
Protocol Stubs

Client DAFS File System Engine

T
ransport

R
esource

M
anagem

ent

Transport Engine

Transport Provider (VI Provider, InfiniBand, etc.)

Transport Provider API (e.g. VIPL)

DAFS Consumer (Application)

user-space D
A

F
S P

rovider

Secondary D
A

F
S P

rovider A
P

I
(T

ransport P
rovider A

P
I--Specific)

Im
port/E

xport T
ransport R

esources

DAFS API Definition Version: 1.0 DAFS Provider Interface Architecture Revision Date: November 17, 2001

Network Appliance, Inc Page 7

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

2.2 API RELATIONSHIP TO THE NATIVE OPERATING SYSTEM I/O SUBSYSTEM

The Consumer interface to the DAFS Provider is independent of the na-
tive operating system I/O Subsystem. That is, data structures and objects
to represent DAFS Provider resources (e.g. open files) that are passed
across the DAFS API are only meaningful to the DAFS Provider, the Con-
sumer is not able to pass handles to these DAFS Provider resources to
native operating system APIs. In other words:

• In a POSIX environment DAFS_FILE_HANDLE is not a file descrip-
tor. It may not be passed to select(2), read(2), write(2), aio_read(3),
aio_write(3) or any other standard system interface. aio_wait(3) is
not able to wait for the completion of a DAFS read or write request.

• In a Win32 environment a DAFS_FILE_HANDLE is not a Win32 han-
dle to a kernel-mode object (not a File Object, not an Event object). It
may not be passed to WaitForSingleObject() WaitForMultipleOb-
jects(), ReadFile(), WriteFile() or any other standard system inter-
face.

Furthermore, a DAFS Handle is only valid in the context of the process in
which the DAFS Handle was created. Consequently, any attempt to use
a DAFS Handles in a child process created by a POSIX fork(2) will result
in undefined behavior.

Signals are not generated when DAFS I/O operations complete. If a signal
handler that interrupts the DAFS Provider performs a longjump outside
the DAFS provider, the behavior of the DAFS Provider is undefined.

2.3 API RELATIONSHIP TO TRANSPORT PROVIDER AND DAFS PROTOCOL

2.3.1 PRIMARY API TO DAFS PROVIDER

The primary Consumer interface to the DAFS Provider is independent of
the underlying memory-to-memory transport(s) in use. It provides a file
level API to the Consumer that hides transport details and details of the
DAFS Protocol. As much as possible the DAFS API tries to present a file
access API that is similar to and functionally compatible with both POSIX
and Win32, though the requirement that memory be registered prior to ini-
tiation of DAFS I/O differs from both.

2.3.1.1 ABSTRACTING TRANSPORT-LEVEL RESOURCES

Individual transport-level resources are abstracted by this API allowing
the DAFS Provider the opportunity to do all of the following without re-
quiring explicit Consumer involvement:

DAFS API Definition Version: 1.0 DAFS Provider Interface Architecture Revision Date: November 17, 2001

Network Appliance, Inc Page 8

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

• to transparently recover from transport-level errors (including recov-
ery involving the server’s replay cache)

• to offer transparent path load balancing

• to offer transparent path failover capabilities

Important structures that the DAFS Provider must construct in order to in-
teract with the transport provider are wrapped by the DAFS Provider.
From the perspective of the primary application interface to the DAFS Pro-
vider, the transport-level constructs are entirely hidden by the DAFS Pro-
vider underneath higher level abstractions presented to the consumer by
the DAFS Provider.

Therefore, even though they may have similar names, and serve similar
functions, the Application must never directly use a DAFS Handle directly
with the transport provider. Specifically, a DAFS_MEM_HANDLE is not a
VIP_MEM_HANDLE, nor is it an Infiniband memory key. Attempts by the
Consumer use a DAFS_MEM_HANDLE in a VIPL or Infiniband interface
will produced undefined results. Similarly attempts by the Consumer to
use a VIP_MEM_HANDLE or memory key in a DAFS Provider interface
will produce undefined results.

2.3.1.2 ABSTRACTING DAFS PROTOCOL STRUCTURES

Individual DAFS Protocol operations and constructs are abstracted un-
derneath the Primary DAFS Provider API. For example, none of the fol-
lowing are directly exposed to the Consumer:

• protocol-level sessions

• protocol-level handles to files

• protocol-level cookies representing protocol-level state for an open
file (e.g. stateid)

• protocol-level cookies representing session state (e.g. registered cre-
dentials)

Instead of exposing them directly, the DAFS Provider abstracts these en-
tities, providing a DAFS Handle to the DAFS Consumer. Thus, for ex-
ample, when the DAFS Provider returns a DAFS_FILE_HANDLE from
dafs_open_file, the DAFS_FILE_HANDLE is not the same thing as the
protocol file handle returned by the server in response to a lookup opera-
tion. The same applies to all other DAFS Handles.

2.3.2 SECONDARY APIS TO IMPORT/EXPORT TRANSPORT PROVIDER RESOURCES

Because some transport provider resources are severely limited, it is de-
sirable to allow a DAFS Consumer that also directly uses the transport
provider for non-DAFS purposes (e.g. for peer-to-peer communications)
to be able to share transport resources with the DAFS Provider.

DAFS API Definition Version: 1.0 DAFS Provider Interface Architecture Revision Date: November 17, 2001

Network Appliance, Inc Page 9

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

It is possible that a series of non-normative appendices could be added to
the normative part of this specification in order to specify secondary,
transport provider API-specific interfaces that allow certain critical re-
sources to be shared between the DAFS Provider and the DAFS Con-
sumer. As an example, the Appendix for VIPL might provide a means to
import/export: VIP_NIC_HANDLEs, VIP_PROTECTION_HANDLEs, and
VIP_MEM_HANDLEs, and possibly VI Host Addresses. We do not antic-
ipate that VIP_VI_HANDLEs or VIP_CQ_HANDLEs would be exposed
through this interface--connection endpoints and completion manage-
ment structures are not shared between the DAFS Provider and the DAFS
Consumer. To date this has not been considered necessary, and so
though the possibility remains, this has not been done.

2.3.3 LACK OF SECONDARY APIS TO EXPOSE RAW DAFS PROTOCOL OPERATIONS

Although it might be possible to provide a secondary set of APIs to im-
port/export DAFS Protocol State associated with a DAFS Handle repre-
senting a protocol construct (similar to the secondary APIs for
importing/exporting transport resources), it is our current feeling that
doing so will introduce significant complexity and provides inappropriate
access “under the hood” of the DAFS Provider. An example of a difficulty
here is the need for the DAFS Provider to maintain consistency of the view
of its client filesystem engine across any direct protocol operations that
the Consumer may choose to invoke.

For example, if the DAFS Provider has a DAFS_FILE_HANDLE repre-
senting an open file, and the Consumer performs a locking operation on
the file directly, the DAFS Provider must be aware of this operation,.

Why? The locking operation will change the stateid on the server for the
file, and subsequent operations by the DAFS Provider using its old stateid
will fail.

The complexity of determining and defining all of these interactions leads
us to the conclusion that defining an API that allows the Consumer direct
access to the protocol bypassing the DAFS Provider is outside the scope
of the definition of a standard DAFS Provider API.

For Applications that find the DAFS Provider inadequate, the DAFS SDK
is available for use by applications that wish to construct their own DAFS
Protocol messages and submit them directly to the transport provider.
However, there is no standard means available for the Consumer to share
the DAFS Protocol state with the DAFS Provider. Thus direct use of the
DAFS SDK by an Application is an all-or-nothing affair on a given set of
DAFS Protocol resources.

DAFS API Definition Version: 1.0 DAFS Provider Interface Architecture Revision Date: November 17, 2001

Network Appliance, Inc Page 10

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

2.4 SERVER CONNECTION MANAGEMENT

The DAFS Provider is responsible for managing the low level transport
and protocol interactions with a physical DAFS server. In particular, the
DAFS Provider is responsible for transport connection establishment, and
for DAFS session establishment. The DAFS Provider is responsible for
low level error recovery when transport errors occur. In addition, when
multiple physical paths exist from the physical DAFS client to the physical
DAFS server, the DAFS Provider is responsible for performing any
trunking, multi-pathing, or load balancing, and for dealing with any server
failover or dataset migration that may occur. Abstraction is key to
achieving these goals. The DAFS API provides no notion of server or ses-
sion, dealing only in path names, files, directories, and their contents, and
memory buffers.

If multiple physical paths exist to the physical server, a sophisticated
DAFS Provider may choose to create multiple DAFS protocol sessions
(perhaps one per physical path), multiplexing independent operations
over the various paths.

2.5 COMPLETION GROUPS

The DAFS Provider API introduces the notion of a DAFS Completion
Group. A DAFS Completion Group provides a mechanism that allows the
Consumer to provide to the DAFS Provider an indication of when a group
of I/O operations are likely to be waited together. Specifically:

• If POSIX file I/O were being used, then their aio_result structures
would have been passed in together into aio_suspend().

• If Win32 file I/O were being used, either they would have been bound
to the same I/O completion port or, their Overlapped Event Handles
would have been passed in together into a WaitForMultipleObjects().

The DAFS Completion Group provides an abstract way to allow the DAFS
Provider to take advantage of transport provider completion queues. The
DAFS Completion Group abstraction improves the DAFS Consumer’s
ability to provide good hints on I/O grouping. At I/O initiation time (e.g. in
dafs_async_read() or dafs_async_write()) the Consumer may specify a
Completion Group to which the I/O completion notification for the opera-
tion should be delivered. When a Consumer thread wants to find the next
I/O completion notification in a Completion Group the Consumer invokes
dafs_cg_done() or dafs_cg_wait() which will return a description of the
next I/O completion notification available in the completion group.

Alternatively, the application may specify a NULL Completion Group
handle at I/O initiation time, thereby indicating that the Consumer does not
wish for the I/O completion notification to be delivered to any Completion
Group. In this case the Consumer must obtain the I/O completion notifi-

DAFS API Definition Version: 1.0 DAFS Provider Interface Architecture Revision Date: November 17, 2001

Network Appliance, Inc Page 11

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

cation by querying the state of particular I/O operations using either
dafs_io_done() or dafs_io_wait().

There are absolutely no restrictions on which I/O operations the Con-
sumer may group together into a single DAFS Completion Group. In par-
ticular:

• Different I/O operations on different open server instances may spec-
ify the same Completion Group.

• Different I/O operations on different open file instances may specify
the same Completion Group.

• Different I/O operations on a single open server instance may specify
different Completion Groups.

• Different I/O operations on a single open file instance may specify dif-
ferent Completion Groups.

Furthermore, it is expected that DAFS Completion Groups will span trans-
port hardware resources. Specifically, even if the transport provider does
not support the grouping of I/Os using different NICs, a single DAFS Com-
pletion Group shall be able to group arbitrary I/Os, regardless of the loca-
tion of, or path to, the target files.

Some background behind the design of DAFS Completion Groups is pro-
vided in Appendix A.

2.6 MEMORY MANAGEMENT

DAFS has been designed to take advantage of the fundamental capability
of memory-to-memory transports to allow safe Remote DMA operations
to Consumer memory that has been registered with the transport provider.
Because registered memory is a highly critical resource (both because it
requires pinning virtual memory regions, and because it consumes NIC
resources to track registered memory regions) the DAFS Provider API
provides exposes a memory registration abstraction to the Consumer.

The dap_register_mem() function is used to allow the Provider to be cog-
nizant of the regions of application memory that used to buffer I/O re-
quests and data, and to manage them in appropriately sized chunks,
avoiding fragmentation and waste. The Provider will bind the memory to
the appropriate transport endpoints as needed, driven by the application’s
use of the registered memory handles in I/O requests.

A similar function, dap_register_shbuffer(), performs the same action of
binding memory to appropriate transport endpoints, but indicates to the
Provider that the buffer is in memory shared among cooperating pro-
cesses. This enables the Provider to optimize resource usage on the
host, particularly transport resources consumed in memory registration.

DAFS API Definition Version: 1.0 DAFS Provider Interface Architecture Revision Date: November 17, 2001

Network Appliance, Inc Page 12

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

Since so few applications are structured to easily allow the preregistration
of buffer memory, the Provider allows a NULL memory handle to be used,
indicating that the DAFS API Provider library is expected to register as
well as bind the memory on the fly. The Provider MAY cache these reg-
istrations and bindings, but since the application almost certainly has
more detailed knowledge of its buffer usage patterns, this feature should
be considered an aid to facilitate ease of porting, and used sparingly.

2.7 AUTHORIZATION AND CREDENTIALS

The DAFS Provider attempts to handle file migration and server fail-over
from the application to the extent possible. Authentication is therefore
managed largely behind the scenes, though it may be necessary, for ex-
ample, to have gotten a Kerberos ticket prior to running the DAFS appli-
cation. This hiding of servers from the application necessitates that any
authentication be managed via callback (registered using
dap_auth_callback() and dap_cred_callback()). Since the first contact
with a new server may be initiated by an attempt to open a file or directory,
and since authentication and a credential handle may be necessary for
that operation, the application must obtain the credential handle prior to
attempting to open the file or directory, and must have registered call-
backs to supply the authentication and credential information before the
open is attempted. The Provider will then use the callbacks to obtain the
specific information from the application.

2.8 FILE MANAGEMENT

The file namespace of the DAFS Provider is not integrated with the native
client filesystem. Thus conventional local files, and non-DAFS mounted
remote filesystems are not visible to the DAFS Provider.

The DAFS consumer brings a remote DAFS filesystem into scope implic-
itly, whenever a file or directory is opened. In addition, the DAFS provider
does not maintain a “current working directory” notion, since that presents
pitfalls in the face of multi-threaded operation. Rather a directory is either
explicitly presented by the DAFS Consumer in the DAFS open file inter-
face, or an absolute path name is used in combination with a NULL direc-
tory handle. Thus a DAFS open file is always interpreted relative to a
Consumer-specified directory, which also serves to indicate which server
an operation is to be performed upon.

2.9 FILE NAMESPACE

The functions specified in the DAFS API access DAFS objects (files, di-
rectories, symbolic links, and named attributes) through ’pathnames’,
which are interpreted in conjunction with a directory handle. These path-
names are equivalent in structure and format to the pathnames supported
on the host platform, and since the pathnames of various host platforms

DAFS API Definition Version: 1.0 DAFS Provider Interface Architecture Revision Date: November 17, 2001

Network Appliance, Inc Page 13

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

differs, their exact syntax is outside the scope of the DAFS API. Neverthe-
less, pathnames have a general structure, which we discuss here.

The namespace is hierarchical, and is rooted in some location that is es-
tablished by convention. On a UNIX-style host, this might mean that all
DAFS directories begin with "/dafs". The components of the hierarchical
namespace must be separated by some character, and this too is a matter
of host platform convention. On a UNIX-style host, the separator is typi-
cally ’/’ while on a Windows platform ’\’ is used. Multiple separators are ig-
nored, as are instances of "." between separators. Other sequences
between separators are called pathname components, and each is (logi-
cally) looked up on the appropriate DAFS server. If a component resolves
to a symbolic link, the contents of that link are read, inserted into the path-
name being interpreted, and the process continues. If a component is
equivalent to ".." then a DAFS_PROC_LOOKUPP protocol message is
used to determine where the next component logically resides. The de-
tails of how the overall namespace is constructed (or in UNIX-speak,
where the mount points reside) are not specified by the DAFS API. This
implies that the details of crossing these so-called "mount points" as well
as their administration is outside the scope of this document, except that
we do note that it is an error to attempt to access non-DAFS files using
these interfaces.

As mentioned above, a directory handle is used in conjunction with the
pathname to determine which DAFS object is being specified. An abso-
lute pathname is one which begins with the separator character, and if an
absolute pathname is given the directory handle may be NULL. Other-
wise, the directory handle serves to indicate which DAFS directory is to be
used as the root of the pathname, or in other words, where in the hierar-
chical namespace the processing of the supplied pathname should begin.
The DAFS API avoids problems with thread safety by requiring that file
objects be specified completely (using the pathname and perhaps direc-
tory handle) rather than maintaining any notion of "current location."

2.10 FILE SHARING

The DAFS API fully supports the sharing of files between clients. A
sharing key may be supplied when opening a file, so that only applications
supplying the matching key will be allowed to open the file. This allows
the first instance of an application to prevent access by subsequent
"rogue" instances which might corrupt the data. NFS-style access masks
may also be supplied, allowing (for example) shared read access but not
write access. The removal of a file that is being held open may be denied
by supplying the DAP_NO_DELETE option when the file is opened. An
application that must initialize data in a shared file prior to making it avail-
able to other clients may use the DAP_UNLINKED option to create the file
without making it visible in the DAFS file name space. A subsequent call
to dap_flink() will then link the existing file handle into the name space so

DAFS API Definition Version: 1.0 DAFS Provider Interface Architecture Revision Date: November 17, 2001

Network Appliance, Inc Page 14

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

that it becomes available to other clients. Finally, various types of locking
and the delegation of file access authority to clients are available to me-
diate shared file access and enforce data consistency.

2.11 ATTRIBUTE HANDLING

Each file has a set of attributes that may be queried and set. These at-
tributes include such things as size, file type (file, symbolic link, directory),
owner, group, access and modification times, and several others. In ad-
dition, a file or directory may have arbitrary attributes attached to it. These
are known as named attributes. To access the named attributes, the ap-
plication passes the DAP_NATTR_DIR flag to dap_open_dir() to open the
named attribute directory, supplying as the path argument the path to the
file whose attributes are being examined. This will return a directory
handle that can be passed to dap_async_read_dir() so that the list of
named attributes can be examined. In order to read or write a named at-
tribute, dap_open_nattr() is used to obtain a file handle, which can be
used to read or write the contents of the named attribute as if it was a reg-
ular file. Named attributes can be removed by using the dap_remove()
routine.

DAFS API Definition Version: 1.0 DAFS Provider Interface Architecture Revision Date: November 17, 2001

Network Appliance, Inc Page 15

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

APPENDIX A: DESIGN BACKGROUND ON COMPLETION GROUPS

DAFS Completion Groups are motivated by VI Completion Queues,
Win32 I/O Completion Ports (IOCP), and the Solaris aiowait(3) interface.
The main feature that they all have in common is that the application has
a single place where it goes and is informed about “the next” completion
operation in a set of “eligible” outstanding operations. All of these mecha-
nisms differ in the manner in which a given “operation” is deemed eligible
for one entity versus another. In all cases though, it is unambiguously
specified to the I/O provider at I/O initiation time where the Application is
to look to block for notification of the completion.

Specifically:

• VI Completion Queues: All operations posted to VI Work Queues
bound to a given CQ have their completion notifications placed on
the bound CQ.

• Win32 I/O Completion ports: All operations issued on file handles
bound to a given I/O Completion Port have their completion notifica-
tions placed on the bound IOCP.

• Solaris aiowait(3): All aio operations initiated by the calling process
have their completion notifications reported by aiowait(3).

For DAFS Completion groups, our preliminary analysis leads us to believe
that Applications will see the best benefit of DAFS if we allow the DAFS
Completion Area to be specified on a per I/O basis (as opposed to binding
an open file instance to a completion area at file open time, or binding an
open server instance to a completion area at server open time).

This is very different than the paradigm of using POSIX aio_suspend(3)
or Win32 WaitForMultipleObjects() where each asynchronous I/O opera-
tion has some form of async I/O handle specified at I/O initiation time, but
when a thread wishes to block waiting for a set of I/Os to complete, the
thread specifies the set of handles for the set of I/Os it is interested in. The
difficulty with this style of API is that the I/O Provider does not know which
APIs will be waited on by a given thread until the thread actually makes a
blocking call.

DAFS API Definition Version: 1.0 DAFS Provider Interface Architecture Revision Date: November 17, 2001

Network Appliance, Inc Page 16

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

APPENDIX B: DESIGN BACKGROUND ON ATTRIBUTE HANDLING

Several interfaces hand back variable amounts of information, among
them dap_async_read_dir(), dap_async_read_dir2(), and dap_get_attr().
In the case of reading through the contents of a directory, the number of
entries may not be known ahead of time, and a set of attributes may be
requested with each entry. In the interest of efficiency, it was a design
goal to avoid requiring the application to read entries one at a time, as is
the case with the POSIX readdir() interface. It is also useful to allow the
application to fetch a large number of entries at one time, while avoiding
the problems of maintaining consistency in the face of behind-the-scenes
Provider data caching.

The method chosen is to allow the application to hand in a buffer to be
filled in with the requested information. The application can chose to use
a very large buffer in order to grab the entire load of data in one operation,
or it can use a smaller buffer and iterate. In the case of iterating through
the contents of a directory, a token is returned with each item which acts
as an index to allow subsequent items to be retrieved using further calls.

To cope with the the variable-length aspect of the data, fixed-size descrip-
tors are always returned at the beginning of the output buffer. Variable-
length items are placed after the fixed-sized descriptors, and pointer fields
within the fixed-sized descriptors are fixed up by the Provider to point at
the (typically NUL-terminated) variable items. This method allows the ap-
plication to easily determine how many items have been returned, then to
walk that number of fixed-sized descriptors at the beginning of the output
buffer, parsing the fields of those descriptors in a natural fashion.

DAFS API Definition Version: 1.0 DAFS Provider Interface Architecture Revision Date: November 17, 2001

Network Appliance, Inc Page 17

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

APPENDIX C: DISCUSSION OF DAFS PROVIDER CACHING

Should the DAFS Provider perform hidden read-ahead and/or write-be-
hind on sequential access patterns? To date, the consensus has been
that adding these features increases overhead and complexity without of-
fering benefits sufficient to offset the cost. Maintaining data consistency
in the face of behind-the-scenes caching is the major cause of the addi-
tional complexity.

If these features were shown to be desireable, the DAFS Provider could
autonomously perform reads into a local buffer on the client, copying the
data from that buffer when the application requests it. On an application
write, the DAFS Provider could autonomously perform a copy into a local
buffer on the client then start writing the data to the server, completing the
application write (potentially) before the write to the server completes.

Any hidden data caching would require that data consistency be main-
tained:

• across distinct open instances of the same file within a single Appli-
cation.

• across processes on a single Node

• across nodes.

Please note: Even if the DAFS provider does not do any hidden opera-
tions identified above, we could still introduce APIs that explicitly provide
support for application-controlled read-ahead and write-behind.

man_pages.txt Sat Nov 17 16:19:09 2001 1

/*
 * Copyright (C) 2000, 2001 DAFS Collaborative
 *
 * Direct Access File System Application Programming Interface (DAFS API)
 * header file: dafs_api.h
 *
 * Abstract:
 *
 * dafs_api.h defines the complete user interface to the
 * Direct Access Provider. DAFS API Version 1.0
 */
#ifndef _DAFS_API_H_
#define _DAFS_API_H_

/*
 * Basic type definitions are platform-dependent
 */
#include "dafs_api_pd.h"

/*
 * Handles
 */
struct dap_cg_handle;
struct dap_mem_handle;
struct dap_cred_handle;
struct dap_file_handle;
typedef struct dap_cg_handle * DAP_CG_HANDLE;
typedef struct dap_mem_handle * DAP_MEM_HANDLE;
typedef struct dap_cred_handle * DAP_CRED_HANDLE;
typedef struct dap_file_handle * DAP_FILE_HANDLE;
typedef DAP_OPAQUE DAP_SHBUFF_KEY;

#define DAP_DIRECTORY_HANDLE DAP_FILE_HANDLE
#define DAP_HANDLE DAP_FILE_HANDLE

#define DAP_NULL_CG_HANDLE ((DAP_CG_HANDLE) 0UL)
#define DAP_NULL_MEM_HANDLE ((DAP_MEM_HANDLE) 0UL)
#define DAP_NULL_CRED_HANDLE ((DAP_CRED_HANDLE) 0UL)
#define DAP_NULL_FILE_HANDLE ((DAP_FILE_HANDLE) 0UL)
#define DAP_NULL_DIRECTORY_HANDLE ((DAP_DIRECTORY_HANDLE) 0UL)

/*
 * File + directory management flags
 */
#define DAP_READ 0x000001
#define DAP_WRITE 0x000002
#define DAP_READ_WRITE 0x000003

#define DAP_UNLINKED 0x000004
#define DAP_NATTR_DIR 0x000008
#define DAP_CREATE 0x000010
#define DAP_APPEND 0x000020
#define DAP_TRUNCATE 0x000040
#define DAP_EXCLUSIVE 0x000080
 /* Behavioral Hints */
#define DAP_RANDOM 0x000100
#define DAP_SEQUENTIAL 0x000200
#define DAP_NONBLOCK 0x000400
#define DAP_BUFFERED 0x000800
#define DAP_NO_FOLLOW 0x001000
#define DAP_NO_DELETE 0x002000
#define DAP_SEQ_REVERSE 0x004000
#define DAP_FILESYSTEM 0x008000 /* valid only for fencing */

man_pages.txt Sat Nov 17 16:19:09 2001 2

 /* Extended Sharing */
#define DAP_SHAREKEY 0x0010000

#define DAP_SHARE_DENY_RD 0x0020000
#define DAP_SHARE_DENY_WR 0x0040000
#define DAP_SHARE_DENY_MASK (DAP_SHARE_DENY_RD | DAP_SHARE_DENY_WR)
#define DAP_SHARE_DENY_BOTH (DAP_SHARE_DENY_RD | DAP_SHARE_DENY_WR)

/* DAP_CREATE_MODE bits */
#define DAP_MODE_OTH_X 000001 /* other - X */
#define DAP_MODE_OTH_W 000002 /* other - W */
#define DAP_MODE_OTH_R 000004 /* other - R */
 /* */
#define DAP_MODE_GRP_X 000010 /* group - X */
#define DAP_MODE_GRP_W 000020 /* group - W */
#define DAP_MODE_GRP_R 000040 /* group - R */
 /* */
#define DAP_MODE_OWN_X 000100 /* owner - X */
#define DAP_MODE_OWN_W 000200 /* owner - W */
#define DAP_MODE_OWN_R 000400 /* owner - R */
 /* */
#define DAP_MODE_ISUID 004000 /* setuid */
#define DAP_MODE_ISGID 002000 /* setgid */
#define DAP_MODE_ISTXT 001000 /* sticky */

/*
 * DAFS API Error codes
 */
typedef
enum dap_errors
{
#define DAP_SUCCESS (0U)
 DAP_ERROR_ACCESS = 0x0DAFE000, /* Direct Access File Errors */
 DAP_ERROR_BADCOOKIE,
 DAP_ERROR_DQUOT,
 DAP_ERROR_FBIG,
 DAP_ERROR_IO,
 DAP_ERROR_LOCKED,
 DAP_ERROR_MLINK,
 DAP_ERROR_NAMETOOLONG,
 DAP_ERROR_NODEV,
 DAP_ERROR_NOTEMPTY,
 DAP_ERROR_NOT_DIRECTORY,
 DAP_ERROR_NXIO,
 DAP_ERROR_SYMLINK,
 DAP_ERROR_WRITE_TOOBIG,
 DAP_ERROR_AUTH_DENIED,
 DAP_ERROR_AUTH_TYPE,
 DAP_ERROR_BAD_ARG,
 DAP_ERROR_BOUND_MEMORY,
 DAP_ERROR_BUFFER_TOO_SMALL,
 DAP_ERROR_CG_INVALID,
 DAP_ERROR_DENIED,
 DAP_ERROR_DIRECTORY,
 DAP_ERROR_FILE_EXISTS,
 DAP_ERROR_INVALID_ACE,
 DAP_ERROR_INVALID_ADDRESS,
 DAP_ERROR_INVALID_ATTR,
 DAP_ERROR_INVALID_CG_HANDLE,
 DAP_ERROR_INVALID_CRED_HANDLE,
 DAP_ERROR_INVALID_CRED_TYPE,
 DAP_ERROR_INVALID_DIR_HANDLE,
 DAP_ERROR_INVALID_FILE_HANDLE,

man_pages.txt Sat Nov 17 16:19:09 2001 3

 DAP_ERROR_INVALID_FLAGS,
 DAP_ERROR_INVALID_IO_RESULT,
 DAP_ERROR_INVALID_KEY,
 DAP_ERROR_INVALID_MEM_HANDLE,
 DAP_ERROR_INVALID_NATTR,
 DAP_ERROR_IO_CANCELLATION,
 DAP_ERROR_IO_OVERLAP,
 DAP_ERROR_KEY_MISMATCH,
 DAP_ERROR_LEASE_EXPIRED,
 DAP_ERROR_LOCK_BROKEN,
 DAP_ERROR_LOCK_DENIED,
 DAP_ERROR_LOCK_RANGE,
 DAP_ERROR_LOOP,
 DAP_ERROR_NOT_IMPLEMENTED,
 DAP_ERROR_NOT_SUPPORTED,
 DAP_ERROR_NO_AUTH,
 DAP_ERROR_NO_IO_PENDING,
 DAP_ERROR_NO_RESOURCES,
 DAP_ERROR_PATH,
 DAP_ERROR_PENDING_IO,
 DAP_ERROR_PERM,
 DAP_ERROR_TIMED_OUT,
 DAP_ERROR_TRANSPORT_FAILURE,
 DAP_ERROR_UNKNOWN_LOCATION,
 DAP_ERROR_UNKNOWN_PATH,
 DAP_ERROR_UNKNOWN_SERVER,
 DAP_ERROR_UNREACHABLE,
 DAP_ERROR_UNREGISTERED_MEM,
 DAP_ERROR_WOULD_BLOCK
} DAP_ERROR;

/*
 * Descriptors
 */
typedef
struct dap_mem_desc
{ /* describes an application memory region */
 DAP_MEM_HANDLE dap_mem_handle;
 DAP_PVOID dap_bufferp;
 DAP_LENGTH dap_buffer_len;
} DAP_MEM_DESC;

typedef
struct dap_io_desc
{ /* describes an I/O completion result */
 DAP_PVOID dap_lib_private;
 DAP_PVOID dap_app_private;
 DAP_LENGTH dap_length;
 DAP_ERROR dap_error;
} DAP_IO_RESULT;

/*
 * The following two structs are used only by dap_async_listio().
 *
 * DAP_IO_REQUEST is a variable sized structure, dynamically allocated
 * by the application, with the size of the two arrays indicated by the
 * two DAP_COUNTs.
 *
 * Thus the starting address of io_req.mem_chunks[0] in the
 * general case is actually:
 *
 * (DAP_MEM_DESC)(&io_req.file_chunks[io_req.num_file_chunks]);

man_pages.txt Sat Nov 17 16:19:09 2001 4

 *
 * and the total size of the structure should be allocated as:
 *
 * sizeof(DAP_IO_REQUEST)
 * + sizeof(DAP_FILE_DESC) * (io_req.num_file_chunks - 1)
 * + sizeof(DAP_MEM_DESC) * (io_req.num_mem_chunks - 1)
 *
 * If num_file_chunks == num_mem_chunks == 1 then the structure may
 * be used as-is, and the dap_async_listio() call is equivalent to either
 * dap_async_write() or dap_async_read(), but providing addtional control
 * over certain behavioral details.
 */
typedef
struct dap_file_chunk
{
 DAP_OFFSET dap_file_offset;
 DAP_COUNT dap_byte_count;
 DAP_UINT32 dap_cache_hint;
} DAP_FILE_DESC;

/*
 * dap_file_chunk.dap_cache_hint values
 *
 * This provides the ability to give the server some information
 * allowing it to better manage its buffer cache and I/O scheduling.
 * These hints provide weighting information, indicating predictions
 * about the client’s intentions regarding future read and write
 * accesses to the byte range. Servers may safely ignore these
 * hints, and neither the probabilities meant by "maybe" and
 * "probably" nor what "near future" means are precisely defined.
 */
#define DAP_LIO_READHINT1 0x000001 /* won’t read in near future */
#define DAP_LIO_READHINT2 0x000002 /* probably won’t read " " " */
#define DAP_LIO_READHINT3 0x000003 /* maybe won’t read " " " */
#define DAP_LIO_READHINT4 0x000004 /* unknown read probability */
#define DAP_LIO_READHINT5 0x000005 /* maybe read in near future */
#define DAP_LIO_READHINT6 0x000006 /* probably will read " " " */
#define DAP_LIO_READHINT7 0x000007 /* certain will read " " " */

#define DAP_LIO_WRITEHINT1 0x000010 /* won’t write in near future */
#define DAP_LIO_WRITEHINT2 0x000020 /* probably won’t write " " " */
#define DAP_LIO_WRITEHINT3 0x000030 /* maybe won’t write " " " */
#define DAP_LIO_WRITEHINT4 0x000040 /* unknown write probability */
#define DAP_LIO_WRITEHINT5 0x000050 /* maybe will write in future */
#define DAP_LIO_WRITEHINT6 0x000060 /* probably will write " " " */
#define DAP_LIO_WRITEHINT7 0x000070 /* certain will write " " " */

#define DAP_LIO_READMASK 0x000007
#define DAP_LIO_WRITEMASK 0x000070

typedef
struct dap_io_request
{
 DAP_FILE_HANDLE dap_file_handle;
 DAP_BOOLEAN dap_write_request; /* else read request */
 DAP_COUNT dap_num_file_chunks;
 DAP_COUNT dap_num_mem_chunks;
 DAP_FILE_DESC dap_file_chunks[1 /*dap_num_file_chunks*/];
 DAP_MEM_DESC dap_mem_chunks[1 /*dap_num_mem_chunks */];
} DAP_IO_REQUEST;

/*
 * Timeouts - timeouts are relative (to the current time)

man_pages.txt Sat Nov 17 16:19:09 2001 5

 */
typedef
struct dap_timeout {
 DAP_UINT64 dap_seconds;
 DAP_UINT32 dap_nseconds;
} DAP_TIMEOUT;

#define DAP_WAIT_NOWAIT_INIT { 0UL, 0UL }
#define DAP_WAIT_FOREVER_INIT { ˜0UL, ˜0UL }

extern const DAP_TIMEOUT dap_nowait_constant;
extern const DAP_TIMEOUT dap_forever_constant;

#define DAP_WAIT_NOWAIT dap_nowait_constant
#define DAP_WAIT_FOREVER dap_forever_constant

/*
 * Timestamps
 *
 * Timestamps (as returned by dap_get_attr() for example)
 * are absolute times, expressed as the number of seconds
 * since January 1, 1970 UTC (Universal Coordinated Time).
 * A timestamp with a negative dap_seconds field refers
 * to times before the 0-hour January 1, 1970 UTC.
 */
typedef DAP_TIMEOUT DAP_TIMESTAMP;

/*
 * Authentication and Credentials
 */
typedef enum
dap_auth_type
{
 DAP_AUTH_NONE,
 DAP_AUTH_TEXT,
 DAP_AUTH_GSS,
 DAP_AUTH_DEFAULT
} DAP_AUTH_TYPE;

#define DAP_AUTH_NONE_MASK (1UL << DAP_AUTH_NONE)
#define DAP_AUTH_TEXT_MASK (1UL << DAP_AUTH_TEXT)
#define DAP_AUTH_GSS_MASK (1UL << DAP_AUTH_GSS)
#define DAP_AUTH_DEFAULT_MASK (1UL << DAP_AUTH_DEFAULT)

typedef struct dap_auth_text_data {
 DAP_CHAR *dap_auth_id;
 DAP_CHAR *dap_auth_password;
} DAP_AUTH_TEXT_DATA;

typedef void * DAP_AUTH_DATA;

typedef enum
dap_cred_type
{
 DAP_CRED_NAME, /* "whoami@some.domain" */
 DAP_CRED_ID, /* uid, gid, groups[] */
 DAP_CRED_GSS, /* structure as per GSS */
 DAP_CRED_DEFAULT /* void */
} DAP_CRED_TYPE;

typedef void DAP_CRED_DATA; /* generic inputs */

typedef DAP_UINT64 DAP_SHARE_KEY;

man_pages.txt Sat Nov 17 16:19:09 2001 6

/*
 * ACLs
 */
typedef
struct dap_acl_info
{
 int dap_type;
 int dap_flag;
 int dap_access_mask;
 DAP_CHAR *dap_who; /* user, a la dap_group and dap_user */
} DAP_ACL_INFO;

/* dap_type bits */
#define DAP_ACL_ALLOW 0x00000001
#define DAP_ACL_DENY 0x00000002
#define DAP_ACL_AUDIT 0x00000004
#define DAP_ACL_ALARM 0x00000008

/* dap_flag bits */
#define DAP_ACL_INHERIT_FILE 0x00000001
#define DAP_ACL_INHERIT_DIR 0x00000002
#define DAP_ACL_NO_PROPAGATE 0x00000004
#define DAP_ACL_INHERIT_ONLY 0x00000008
#define DAP_ACL_SUCCESSFUL_ACC 0x00000010
#define DAP_ACL_FAILED_ACC 0x00000020
#define DAP_ACL_ID_GROUP 0x00000040

/* dap_access_mask bits */
#define DAP_ACL_READ_DATA 0x00000001
#define DAP_ACL_LIST_DIR 0x00000001
#define DAP_ACL_WRITE_DATA 0x00000002
#define DAP_ACL_ADD_FILE 0x00000002
#define DAP_ACL_APPEND_DATA 0x00000004
#define DAP_ACL_ADD_SUBDIR 0x00000004
#define DAP_ACL_READ_NAMED_ATTRS 0x00000008
#define DAP_ACL_WRITE_NAMED_ATTRS 0x00000010
#define DAP_ACL_EXECUTE 0x00000020
#define DAP_ACL_DELETE_CHILD 0x00000040
#define DAP_ACL_READ_ATTRS 0x00000080
#define DAP_ACL_WRITE_ATTRS 0x00000100
 /* ... */
#define DAP_ACL_DELETE 0x00010000
#define DAP_ACL_READ_ACL 0x00020000
#define DAP_ACL_WRITE_ACL 0x00040000
#define DAP_ACL_WROTE_OWNER 0x00080000
#define DAP_ACL_SYNC 0x00100000

/*
 * dap_who values will normally be of the form "user@dns_domain".
 *
 * In addition, there are several distinguished values having
 * special meanings:
 *
 * "OWNER@" - the owner of the file
 * "GROUP@" - the group associated with the file
 * "EVERYONE@" - the world
 * "INTERACTIVE@" - access from an interactive terminal
 * "NETWORK@" - accessed via the network
 * "DIALUP@" - accessed as a dialup user
 * "BATCH@" - accessed from a batch job
 * "ANONYMOUS@" - unauthenticated
 * "AUTHENTICATED@" - the opposite of ANONYMOUS@

man_pages.txt Sat Nov 17 16:19:09 2001 7

 * "SERVICE@" - accessed from a system service
 */

/*
 * Fencing
 *
 * Fence lists are arbitrary strings, indicating those clients who are
 * allowed to access a file or file system, and are used by cooperating
 * processes to implement client access revocation.
 */

typedef enum
dap_fencelist_update
{
 DAP_FENCE_REPLACE, /* new list */
 DAP_FENCE_APPEND, /* add to list */
 DAP_FENCE_REMOVE /* remove from list */
} DAP_FENCELIST_UPDATE;

/*
 * Attributes of file system objects
 *
 * The bitmap valid_attrs indicates what portion of the remaining
 * contents are valid.
 */
#define DAP_STAT_OBJECT_TYPE (1ULL << 0) /* mandatory */
#define DAP_STAT_CHANGE (1ULL << 1) /* mandatory */
#define DAP_STAT_OBJECT_SIZE (1ULL << 2) /* mandatory */
#define DAP_STAT_NAMED_ATTR (1ULL << 3)
/* #define DAP_STAT_ACL (1ULL << 4) not via set_attr */
#define DAP_STAT_ARCHIVE (1ULL << 5)
#define DAP_STAT_FILE_HANDLE (1ULL << 6)
#define DAP_STAT_FILE_ID (1ULL << 7) /* mandatory */
#define DAP_STAT_HIDDEN (1ULL << 8)
#define DAP_STAT_MIME_TYPE (1ULL << 9)
#define DAP_STAT_MODE (1ULL << 10)
#define DAP_STAT_NUM_LINKS (1ULL << 11)
#define DAP_STAT_OWNER (1ULL << 12)
#define DAP_STAT_OWNER_GROUP (1ULL << 13)
#define DAP_STAT_SYSTEM (1ULL << 14)
#define DAP_STAT_TIME_ACCESS (1ULL << 15)
#define DAP_STAT_TIME_ACCESS_SET (1ULL << 16)
#define DAP_STAT_TIME_BACKUP (1ULL << 17)
#define DAP_STAT_TIME_CREATE (1ULL << 18)
#define DAP_STAT_TIME_DELTA (1ULL << 19)
#define DAP_STAT_TIME_METADATA (1ULL << 20)
#define DAP_STAT_TIME_MODIFY (1ULL << 21)
#define DAP_STAT_TIME_MODIFY_SET (1ULL << 22)
#define DAP_STAT_SPACE_USED (1ULL << 23)
#define DAP_STAT_RAW_DEVICE (1ULL << 24)

typedef enum
dap_filetype
{
 DAP_NONE,
 DAP_FILE,
 DAP_DIR,
 DAP_BLOCK_DEV,
 DAP_CHAR_DEV,
 DAP_SYMLINK,
 DAP_SOCKET,
 DAP_FIFO,

man_pages.txt Sat Nov 17 16:19:09 2001 8

 DAP_ATTR_DIR,
 DAP_NATTR
} DAP_FILETYPE;

typedef /* Internal FS handle, useful to detect FS crossings */
struct dap_fshandle
{
 DAP_OPAQUE dap_filesys_hdl[2];
} DAP_FSHANDLE;

/* additional file type information */
typedef
struct dap_specdata
{
 DAP_UINT64 specdata1;
 DAP_UINT64 specdata2;
} DAP_SPECDATA;

typedef
struct dap_stat_desc
{
 DAP_BITMAP dap_valid_attrs;

 DAP_BITMAP dap_change;
 DAP_OPAQUE dap_file_id;
 DAP_LENGTH dap_object_size;
 DAP_LENGTH dap_space_used;
 DAP_CREATE_MODE dap_mode;
 DAP_COUNT dap_num_links;
 DAP_TIMESTAMP dap_access_time;
 DAP_TIMESTAMP dap_access_set_time;
 DAP_TIMESTAMP dap_backup_time;
 DAP_TIMESTAMP dap_create_time;
 DAP_TIMESTAMP dap_delta_time;
 DAP_TIMESTAMP dap_metadata_time;
 DAP_TIMESTAMP dap_modify_time;
 DAP_TIMESTAMP dap_modify_set_time;
 DAP_SPECDATA dap_raw_device;
 DAP_FILETYPE dap_object_type;
 DAP_BOOLEAN dap_is_hidden;
 DAP_BOOLEAN dap_is_system;
 DAP_BOOLEAN dap_is_named_attrs;
 DAP_BOOLEAN dap_is_archive;
 DAP_CHAR *dap_mimetype;
 DAP_CHAR *dap_owner;
 DAP_CHAR *dap_owner_group;
 DAP_FSHANDLE dap_filesys_handle;
} DAP_STAT_DESC;

/*
 * Directory information
 */
typedef
struct dap_direntry
{
 DAP_FILETYPE dap_direntry_type;
 DAP_OFFSET dap_direntry_cookie;
 DAP_CHAR *dap_direntry_name;
 DAP_STAT_DESC *dap_direntry_attrp;
} DAP_DIRENTRY;

typedef

man_pages.txt Sat Nov 17 16:19:09 2001 9

struct dap_readdir_result {
 DAP_OPAQUE dap_cookiev;
 DAP_BOOLEAN dap_end_flag;
 DAP_COUNT dap_num_entries;
 DAP_DIRENTRY dap_entry[1]; /* Variable-sized */
} DAP_READDIR_RESULT;

/*
 * Attributes of file systems
 *
 * The bitmap dap_valid_attrs indicates what portion of the remaining
 * contents are valid.
 */
#define DAP_FSSTAT_LINK_SUPPORT (1ULL << 0) /* mandatory */
#define DAP_FSSTAT_SYMLINK_SUPPORT (1ULL << 1) /* mandatory */
#define DAP_FSSTAT_CAN_SET_TIME (1ULL << 2)
#define DAP_FSSTAT_CASE_INSENSITIVE (1ULL << 3)
#define DAP_FSSTAT_CASE_PRESERVING (1ULL << 4)
#define DAP_FSSTAT_CHOWN_RESTRICTED (1ULL << 5)
#define DAP_FSSTAT_HOMOGENEOUS (1ULL << 6)
#define DAP_FSSTAT_NO_TRUNC (1ULL << 7)
#define DAP_FSSTAT_UNIQUE_HANDLE (1ULL << 8)
#define DAP_FSSTAT_LEASE_TIME (1ULL << 9) /* mandatory */
#define DAP_FSSTAT_RD_ATTR_SUPPORT (1ULL << 10) /* mandatory */
#define DAP_FSSTAT_ACL_SUPPORT (1ULL << 11)
#define DAP_FSSTAT_MAX_LINK (1ULL << 12)
#define DAP_FSSTAT_MAX_NAME (1ULL << 13)
#define DAP_FSSTAT_SUPPORTED_FATTRS (1ULL << 14) /* mandatory */
#define DAP_FSSTAT_SUPPORTED_FSATTRS (1ULL << 15) /* mandatory */
#define DAP_FSSTAT_FILES_AVAILABLE (1ULL << 16)
#define DAP_FSSTAT_FILES_FREE (1ULL << 17)
#define DAP_FSSTAT_FILES_TOTAL (1ULL << 18)
#define DAP_FSSTAT_MAX_FILE_SIZE (1ULL << 19)
#define DAP_FSSTAT_MAX_READ (1ULL << 20)
#define DAP_FSSTAT_MAX_WRITE (1ULL << 21)
#define DAP_FSSTAT_QUOTA_HARD (1ULL << 22)
#define DAP_FSSTAT_QUOTA_SOFT (1ULL << 23)
#define DAP_FSSTAT_QUOTA_USED (1ULL << 24)
#define DAP_FSSTAT_SPACE_AVAIL (1ULL << 25)
#define DAP_FSSTAT_SPACE_FREE (1ULL << 26)
#define DAP_FSSTAT_SPACE_TOTAL (1ULL << 27)
#define DAP_FSSTAT_FS_HANDLE (1ULL << 28) /* mandatory */
#define DAP_FSSTAT_MAX_APPEND (1ULL << 29) /* mandatory */
#define DAP_FSSTAT_PREF_IO_SIZE (1ULL << 30)
#define DAP_FSSTAT_SPACE_USED (1ULL << 31)
/*
 * failover_locations and new_locations are deliberately omitted,
 * being reserved for provider implementations, not exposed to apps.
 */

/*
 * File system behavioral attributes
 */
typedef
struct dap_filesys_desc
{
 DAP_BITMAP dap_valid_attrs;

 DAP_BOOLEAN dap_link_support;
 DAP_BOOLEAN dap_symlink_support;
 DAP_BOOLEAN dap_can_set_time;
 DAP_BOOLEAN dap_ignores_case;
 DAP_BOOLEAN dap_preserves_case;
 DAP_BOOLEAN dap_chown_restricted;

man_pages.txt Sat Nov 17 16:19:09 2001 10

 DAP_BOOLEAN dap_homogeneous;
 DAP_BOOLEAN dap_no_truncate;
 DAP_BOOLEAN dap_unique_handle;
 DAP_UINT32 dap_lease_time;
 DAP_UINT32 dap_rd_attr_error;
 DAP_UINT32 dap_acl_support;
 DAP_UINT32 dap_max_links;
 DAP_UINT32 dap_max_name;
 DAP_BITMAP dap_supported_attrs;
 DAP_BITMAP dap_supported_fs_attrs;
 DAP_UINT64 dap_files_available;
 DAP_UINT64 dap_files_free;
 DAP_UINT64 dap_files_total;
 DAP_UINT64 dap_max_file_size;
 DAP_UINT64 dap_max_read;
 DAP_UINT64 dap_max_write;
 DAP_UINT64 dap_quota_hard;
 DAP_UINT64 dap_quota_soft;
 DAP_UINT64 dap_quota_used;
 DAP_UINT64 dap_space_avail;
 DAP_UINT64 dap_space_free;
 DAP_UINT64 dap_space_total;
 DAP_UINT64 dap_space_used;
 DAP_UINT64 dap_max_append;
 DAP_UINT64 dap_prefer_iosize;
 DAP_FSHANDLE dap_filesys_handle;
} DAP_FILESYS_DESC;

/*
 * Locking
 */
typedef enum
dap_lock_type
{
 DAP_LOCK_TRY_READ, /* Read Lock */
 DAP_LOCK_TRY_WRITE, /* Write Lock */
 DAP_LOCK_READ, /* Blocking RL */
 DAP_LOCK_WRITE, /* Blocking WL */
 DAP_LOCK_ABORT /* roll back */
} DAP_LOCK_TYPE;

#define DAP_LOCK_OPT_PERSIST 0x01 /* Persist */
#define DAP_LOCK_OPT_AUTOREC 0x02 /* AutoRecover */
#define DAP_LOCK_OPT_REPAIR 0x04 /* if broken */

/*
 * Function prototypes
 */

#ifdef __cplusplus
extern "C" {
#endif

/*
 * Authentication and Credentials
 */
typedef unsigned int
 (*DAP_AUTH_FUNC) (
 void * /* context */ ,
 unsigned int /* opcode */ ,
 DAP_AUTH_TYPE /* auth_type */ ,
 DAP_LENGTH * /* auth_size */ ,
 DAP_AUTH_DATA /* auth_data */);
typedef unsigned int

man_pages.txt Sat Nov 17 16:19:09 2001 11

 (*DAP_CRED_FUNC) (
 void * /* context */ ,
 DAP_CRED_HANDLE /* cred_handle */ ,
 unsigned int /* opcode */ ,
 DAP_CRED_TYPE * /* cred_type */ ,
 DAP_LENGTH * /* cred_data_len */ ,
 DAP_CRED_DATA * /* cred_data */);

extern
DAP_ERROR
dap_auth_callback(
 unsigned int /* auth_type_mask */ ,
 void * /* handler_context */ ,
 DAP_AUTH_FUNC /* dap_auth_handler */);

extern
DAP_ERROR
dap_create_credential(
 void * /* handler_context */ ,
 DAP_CRED_HANDLE * /* cred_handle */);

extern
DAP_ERROR
dap_destroy_credential(
 DAP_CRED_HANDLE /* cred_handle */);

extern
DAP_ERROR
dap_cred_callback(
 DAP_CRED_FUNC dap_cred_handler);

/*
 * Memory Management
 */
extern
DAP_ERROR
dap_register_mem(
 DAP_PVOID /* buffer */ ,
 DAP_LENGTH /* length */ ,
 DAP_MEM_HANDLE * /* mem_handle */);

extern
DAP_ERROR
dap_register_shbuffer(
 DAP_PVOID /* buffer */ ,
 DAP_LENGTH /* length */ ,
 DAP_SHBUFF_KEY /* buff_key */ ,
 DAP_FLAGS /* flags */ ,
 DAP_MEM_HANDLE * /* mem_handle */);

extern
DAP_ERROR
dap_deregister_mem(
 DAP_MEM_HANDLE /* mem_handle */);

/*
 * Completion Group Management
 */
extern
DAP_ERROR
dap_create_cg(
 DAP_CG_HANDLE * /* cg_handle */ ,
 DAP_COUNT /* cg_entries */);

man_pages.txt Sat Nov 17 16:19:09 2001 12

extern
DAP_ERROR
dap_destroy_cg(
 DAP_CG_HANDLE /* cg_handle */);

/*
 * File and Directory Management
 */
extern
DAP_ERROR
dap_open_file(
 DAP_DIRECTORY_HANDLE /* dir_handle */ ,
 DAP_CRED_HANDLE /* cred_handle */ ,
 const DAP_CHAR * /* path */ ,
 DAP_FLAGS /* flags */ ,
 DAP_CREATE_MODE /* mode */ ,
 DAP_SHARE_KEY /* share_key */ ,
 DAP_FILE_HANDLE * /* file_handle */);

extern
DAP_ERROR
dap_close_file(
 DAP_FILE_HANDLE /* file_handle */);

extern
DAP_ERROR
dap_make_dev(
 DAP_DIRECTORY_HANDLE /* dir_handle */ ,
 DAP_CRED_HANDLE /* cred_handle */ ,
 const DAP_CHAR * /* path */ ,
 DAP_FILETYPE /* type */ ,
 DAP_CREATE_MODE /* mode */ ,
 const DAP_SPECDATA * /* spec_data */);

/*
 * Data Transfer and Completion
 */
extern
DAP_ERROR
dap_async_read(
 DAP_FILE_HANDLE /* file_handle */ ,
 DAP_OFFSET /* file_offset */ ,
 DAP_COUNT /* io_count */ ,
 const DAP_MEM_DESC * /* mem_desc */ ,
 DAP_CG_HANDLE /* cg_handle */ ,
 DAP_IO_RESULT * /* io_desc */);

extern
DAP_ERROR
dap_async_write(
 DAP_FILE_HANDLE /* file_handle */ ,
 DAP_OFFSET /* file_offset */ ,
 DAP_COUNT /* io_count */ ,
 const DAP_MEM_DESC * /* mem_desc */ ,
 DAP_CG_HANDLE /* cg_handle */ ,
 DAP_IO_RESULT * /* io_desc */);

extern
DAP_ERROR
dap_io_done(
 DAP_IO_RESULT * /* io_desc */);

extern

man_pages.txt Sat Nov 17 16:19:09 2001 13

DAP_ERROR
dap_io_wait(
 DAP_TIMEOUT /* timeout */ ,
 DAP_IO_RESULT * /* io_desc */);

extern
DAP_ERROR
dap_cg_done(
 DAP_CG_HANDLE /* cg_handle */ ,
 DAP_IO_RESULT ** /* io_desc */);

extern
DAP_ERROR
dap_cg_batchwait(
 DAP_CG_HANDLE /* cg_handle */ ,
 DAP_TIMEOUT /* timeout */ ,
 DAP_COUNT * /* n_results */ ,
 DAP_IO_RESULT ** /* io_desc */);

extern
DAP_ERROR
dap_cg_wait(
 DAP_CG_HANDLE /* cg_handle */ ,
 DAP_TIMEOUT /* timeout */ ,
 DAP_IO_RESULT ** /* io_desc */);

extern
DAP_ERROR
dap_expedite(
 DAP_IO_RESULT * /* io_desc */);

extern
DAP_ERROR
dap_cancel_async_op(
 DAP_IO_RESULT * /* io_desc */);

extern
DAP_ERROR
dap_read(
 DAP_FILE_HANDLE /* file_handle */ ,
 DAP_OFFSET /* file_offset */ ,
 DAP_COUNT /* io_count */ ,
 const DAP_MEM_DESC * /* mem_desc */ ,
 DAP_LENGTH * /* done_count */);

extern
DAP_ERROR
dap_write(
 DAP_FILE_HANDLE /* file_handle */ ,
 DAP_OFFSET /* file_offset */ ,
 DAP_COUNT /* io_count */ ,
 const DAP_MEM_DESC * /* mem_desc */ ,
 DAP_LENGTH * /* done_count */);

extern
DAP_ERROR
dap_async_listio(
 DAP_COUNT /* io_count */ ,
 DAP_IO_REQUEST * const [] /* io_requests */ ,
 DAP_CG_HANDLE /* cg_handle */ ,
 DAP_IO_RESULT * const [] /* io_descs */ ,
 DAP_UINT32 /* usec_window */ ,
 DAP_UINT32 /* num_completions */);

man_pages.txt Sat Nov 17 16:19:09 2001 14

/*
 * Directory and File Management Operations
 */
extern
DAP_ERROR
dap_open_dir(
 DAP_DIRECTORY_HANDLE /* base_dir_handle */ ,
 DAP_CRED_HANDLE /* cred_handle */ ,
 const DAP_CHAR * /* path */ ,
 DAP_FLAGS /* flags */ ,
 DAP_CREATE_MODE /* dap_mode */ ,
 DAP_DIRECTORY_HANDLE * /* dir_handle */);

extern
DAP_ERROR
dap_close_dir(
 DAP_DIRECTORY_HANDLE /* dir_handle */);

extern
DAP_ERROR
dap_async_read_dir(
 DAP_DIRECTORY_HANDLE /* dir_handle */ ,
 DAP_OFFSET /* cookie */ ,
 DAP_OPAQUE /* cookie_verifier */ ,
 DAP_MEM_HANDLE /* mem_handle */ ,
 DAP_LENGTH /* size */ ,
 DAP_READDIR_RESULT * /* resultp */ ,
 DAP_CG_HANDLE /* cg_handle */ ,
 DAP_IO_RESULT * /* io_desc */);

extern
DAP_ERROR
dap_async_read_dir2(
 DAP_DIRECTORY_HANDLE /* dir_handle */ ,
 DAP_OFFSET /* cookie */ ,
 DAP_OPAQUE /* cookie_verifier */ ,
 DAP_BITMAP /* attrs_requested */ ,
 DAP_MEM_HANDLE /* mem_handle */ ,
 DAP_LENGTH /* size */ ,
 DAP_READDIR_RESULT * /* resultp */ ,
 DAP_CG_HANDLE /* cg_handle */ ,
 DAP_IO_RESULT * /* io_desc */);

extern
DAP_ERROR
dap_read_dir(
 DAP_DIRECTORY_HANDLE /* dir_handle */ ,
 DAP_OFFSET /* cookie */ ,
 DAP_OPAQUE /* cookie_verifier */ ,
 DAP_MEM_HANDLE /* mem_handle */ ,
 DAP_LENGTH /* size */ ,
 DAP_READDIR_RESULT * /* resultp */);

extern
DAP_ERROR
dap_read_dir2(
 DAP_DIRECTORY_HANDLE /* dir_handle */ ,
 DAP_OFFSET /* cookie */ ,
 DAP_OPAQUE /* cookie_verifier */ ,
 DAP_BITMAP /* attrs_requested */ ,
 DAP_MEM_HANDLE /* mem_handle */ ,
 DAP_LENGTH /* size */ ,
 DAP_READDIR_RESULT * /* resultp */);

extern

man_pages.txt Sat Nov 17 16:19:09 2001 15

DAP_ERROR
dap_remove(
 DAP_DIRECTORY_HANDLE /* dir_handle */ ,
 DAP_CRED_HANDLE /* cred_handle */ ,
 const DAP_CHAR * /* path */);

extern
DAP_ERROR
dap_rename(
 DAP_DIRECTORY_HANDLE /* dir_handle */ ,
 DAP_CRED_HANDLE /* cred_handle */ ,
 const DAP_CHAR * /* old_path */ ,
 const DAP_CHAR * /* new_path */);

extern
DAP_ERROR
dap_link(
 DAP_DIRECTORY_HANDLE /* dir_handle */ ,
 DAP_CRED_HANDLE /* cred_handle */ ,
 const DAP_CHAR * /* old_path */ ,
 const DAP_CHAR * /* new_name */);

extern
DAP_ERROR
dap_flink(
 DAP_DIRECTORY_HANDLE /* dir_handle */ ,
 DAP_CRED_HANDLE /* cred_handle */ ,
 DAP_FILE_HANDLE /* old_file */ ,
 const DAP_CHAR * /* new_path */);

extern
DAP_ERROR
dap_symlink(
 DAP_DIRECTORY_HANDLE /* dir_handle */ ,
 DAP_CRED_HANDLE /* cred_handle */ ,
 const DAP_CHAR * /* old_path */ ,
 const DAP_CHAR * /* new_path */);

extern
DAP_ERROR
dap_read_link(
 DAP_DIRECTORY_HANDLE /* dir_handle */ ,
 DAP_CRED_HANDLE /* cred_handle */ ,
 const DAP_CHAR * /* path */ ,
 DAP_COUNT /* buffer_size */ ,
 DAP_CHAR * /* buffer */);

extern
DAP_ERROR
dap_get_attr(
 DAP_DIRECTORY_HANDLE /* dir_handle */ ,
 DAP_CRED_HANDLE /* cred_handle */ ,
 const DAP_CHAR * /* path */ ,
 DAP_FLAGS /* flags */ ,
 DAP_BITMAP /* attrs_requested */ ,
 DAP_COUNT /* max_byte_count */ ,
 DAP_STAT_DESC * /* descr_ptr */);

extern
DAP_ERROR
dap_get_fattr(
 DAP_HANDLE /* some_handle */ ,
 DAP_BITMAP /* attrs_requested */ ,
 DAP_COUNT /* max_byte_count */ ,
 DAP_STAT_DESC * /* descr_ptr */);

man_pages.txt Sat Nov 17 16:19:09 2001 16

extern
DAP_ERROR
dap_set_attr(
 DAP_DIRECTORY_HANDLE /* dir_handle */ ,
 DAP_CRED_HANDLE /* cred_handle */ ,
 const DAP_CHAR * /* path */ ,
 DAP_FLAGS /* flags */ ,
 DAP_STAT_DESC * /* descr_ptr */ ,
 DAP_BITMAP * /* attrs_changed */);

extern
DAP_ERROR
dap_set_fattr(
 DAP_HANDLE /* some_handle */ ,
 DAP_STAT_DESC * /* descr_ptr */ ,
 DAP_BITMAP * /* attrs_changed */);

extern
DAP_ERROR
dap_chmod(
 DAP_DIRECTORY_HANDLE /* dir_handle */ ,
 DAP_CRED_HANDLE /* cred_handle */ ,
 const DAP_CHAR * /* path */ ,
 DAP_CREATE_MODE /* mode */);
extern
DAP_ERROR
dap_chown(
 DAP_DIRECTORY_HANDLE /* dir_handle */ ,
 DAP_CRED_HANDLE /* cred_handle */ ,
 const DAP_CHAR * /* path */ ,
 const DAP_CHAR * /* owner */ ,
 const DAP_CHAR * /* group */);

extern
DAP_ERROR
dap_fchmod(
 DAP_HANDLE /* some_handle */ ,
 DAP_CREATE_MODE /* mode */);

extern
DAP_ERROR
dap_fchown(
 DAP_HANDLE /* some_handle */ ,
 const DAP_CHAR * /* owner */ ,
 const DAP_CHAR * /* group */);

extern
DAP_ERROR
dap_fsync(
 DAP_FILE_HANDLE /* file_handle */);

extern
DAP_ERROR
dap_open_nattr(
 DAP_DIRECTORY_HANDLE /* nattr_dir_handle */ ,
 DAP_CRED_HANDLE /* cred_handle */ ,
 const DAP_CHAR * /* attr_name */ ,
 DAP_FLAGS /* flags */ ,
 DAP_FILE_HANDLE * /* file_handle */);

extern
DAP_ERROR
dap_filesys_query(
 DAP_DIRECTORY_HANDLE /* dir_handle */ ,

man_pages.txt Sat Nov 17 16:19:09 2001 17

 DAP_CRED_HANDLE /* cred_handle */ ,
 const DAP_CHAR * /* path */ ,
 DAP_BITMAP /* attrs_requested */ ,
 DAP_COUNT /* max_byte_count */ ,
 DAP_FILESYS_DESC * /* filesys_info */);

extern
DAP_ERROR
dap_lock_range(
 DAP_FILE_HANDLE /* file_handle */ ,
 DAP_OFFSET /* byte_offset */ ,
 DAP_LENGTH /* byte_length */ ,
 DAP_LOCK_TYPE /* lock_type */ ,
 unsigned int /* lock_options */ ,
 DAP_TIMEOUT /* how_long */);

extern
DAP_ERROR
dap_unlock_range(
 DAP_FILE_HANDLE /* file_handle */ ,
 DAP_OFFSET /* byte_offset */ ,
 DAP_LENGTH /* byte_length */);

extern
DAP_ERROR
dap_get_acl(
 DAP_DIRECTORY_HANDLE /* dir_handle */ ,
 DAP_CRED_HANDLE /* cred_handle */ ,
 const DAP_CHAR * /* path */ ,
 DAP_FLAGS /* flags */ ,
 DAP_COUNT /* max_byte_count */ ,
 DAP_ACL_INFO * /* aces_ptr */ ,
 DAP_COUNT * /* num_aces */);

extern
DAP_ERROR
dap_set_acl(
 DAP_DIRECTORY_HANDLE /* dir_handle */ ,
 DAP_CRED_HANDLE /* cred_handle */ ,
 const DAP_CHAR * /* path */ ,
 DAP_FLAGS /* flags */ ,
 DAP_COUNT /* num_aces */ ,
 const DAP_ACL_INFO * /* aces_ptr */);

extern
DAP_ERROR
dap_set_fenceID(
 const DAP_CHAR * /* fence_ID */);

extern
DAP_ERROR
dap_set_fencelist(
 DAP_DIRECTORY_HANDLE /* dir_handle */ ,
 DAP_CRED_HANDLE /* cred_handle */ ,
 const DAP_CHAR * /* path */ ,
 DAP_FLAGS /* flags */ ,
 DAP_FENCELIST_UPDATE /* action */ ,
 DAP_COUNT /* num_fence_ids */ ,
 DAP_CHAR * const /* fence_ids_ptr */ []);

extern
DAP_ERROR
dap_get_fencelist(
 DAP_DIRECTORY_HANDLE /* dir_handle */ ,
 DAP_CRED_HANDLE /* cred_handle */ ,

man_pages.txt Sat Nov 17 16:19:09 2001 18

 const DAP_CHAR * /* path */ ,
 DAP_FLAGS /* flags */ ,
 DAP_COUNT /* max_byte_count */ ,
 DAP_CHAR * /* fence_ids_ptr */ [],
 DAP_COUNT * /* num_fence_ids */);

extern
const char *
dap_strerror(
 DAP_ERROR /* error_code */);

/*
 * Vendor-specific interface for extended functionality
 *
 * The single pre-defined extension is one that returns the
 * provider name as a NUL-terminated string and the major
 * and minor version number. All providers are encouraged
 * to support this query, and must support the interface.
 */
typedef struct
dap_ext_version {
define DAP_EXT_GETVERSION 0x0001
 unsigned int dap_major;
 unsigned int dap_minor;
 char dap_provider[80];
} DAP_EXT_VERSION;

extern
DAP_ERROR
dap_extensions(
 unsigned int /* request_token */ ,
 DAP_PVOID /* argument_ptr */ ,
 DAP_COUNT /* argument_size */);

#ifdef __cplusplus
}
#endif

#endif /*_DAFS_API_H_*/

man_pages.txt Sat Nov 17 16:19:09 2001 19

/*
 * Copyright (C) 2000, 2001 DAFS Collaborative
 *
 * Direct Access File System Application Programming Interface (DAFS API)
 * sample header file: dafs_api_pd.h
 *
 * Abstract:
 *
 * Platform-dependent type definitions - an example.
 *
 * N.B.: This file contains sample definitions, and is not
 * necessarily correct for any particular hardware/software
 * combination.
 */
#ifndef _DAFS_API_PD_H_
#define _DAFS_API_PD_H_

/*
 * Fundamental types
 */
typedef char DAP_CHAR;
typedef unsigned char DAP_UCHAR;
typedef unsigned int DAP_BOOLEAN;
typedef unsigned int DAP_COUNT;
typedef unsigned long long DAP_LENGTH;
typedef unsigned long long DAP_OFFSET;
typedef unsigned long long DAP_OPAQUE;
typedef unsigned long long DAP_BITMAP;
typedef void * DAP_PVOID;

typedef unsigned long DAP_CREATE_MODE;
typedef unsigned long DAP_FLAGS;

/*
 * Machine-Dependent types for a Generic Nondescript Platform
 */
typedef unsigned long long DAP_UINT64;
typedef unsigned long DAP_UINT32;
typedef unsigned short DAP_UINT16;
typedef unsigned char DAP_UINT8;

#endif /* _DAFS_API_PD_H_ */

man_pages.txt Sat Nov 17 16:19:09 2001 20

/*
 * Copyright (C) 2000, 2001 DAFS Collaborative
 *
 * Direct Access File System Application Programming Interface (DAFS API)
 * sample header file: dafs_api_pd.h -- BSD version
 *
 * Abstract:
 *
 * Platform-dependent type definitions - an example.
 *
 * N.B.: This file contains sample definitions, and is not
 * necessarily correct for any particular hardware/software
 * combination.
 */
#ifndef _DAFS_API_PD_H_
#define _DAFS_API_PD_H_

/*
 * Fundamental types
 */
typedef char DAP_CHAR;
typedef unsigned char DAP_UCHAR;
typedef unsigned int DAP_BOOLEAN;
typedef unsigned int DAP_COUNT;
typedef unsigned long long DAP_LENGTH;
typedef unsigned long long DAP_OFFSET;
typedef unsigned long long DAP_OPAQUE;
typedef unsigned long long DAP_BITMAP;
typedef void * DAP_PVOID;

typedef unsigned long DAP_CREATE_MODE;
typedef unsigned long DAP_FLAGS;

/*
 * Machine-Dependent types for BSDI/OS 4.0 on Intel32
 */
#include <sys/types.h>
typedef u_int64_t DAP_UINT64;
typedef u_int32_t DAP_UINT32;
typedef u_int16_t DAP_UINT16;
typedef u_int8_t DAP_UINT8;

typedef union {
 DAP_UINT64 AddressBits; /* only the low 32 bits used */
 DAP_PVOID Address;
} DAP_PVOID64;

#endif /* _DAFS_API_PD_H_ */

man_pages.txt Sat Nov 17 16:19:09 2001 21

/*
 * Copyright (C) 2000, 2001 DAFS Collaborative
 *
 * Direct Access File System Application Programming Interface (DAFS API)
 * sample header file: dafs_api_pd.h -- Linux version
 *
 * Abstract:
 *
 * Platform-dependent type definitions - an example.
 *
 * N.B.: This file contains sample definitions, and is not
 * necessarily correct for any particular hardware/software
 * combination.
 */
#ifndef _DAFS_API_PD_H_
#define _DAFS_API_PD_H_

/*
 * Fundamental types
 */
typedef char DAP_CHAR;
typedef unsigned char DAP_UCHAR;
typedef unsigned int DAP_BOOLEAN;
typedef unsigned int DAP_COUNT;
typedef unsigned long long DAP_LENGTH;
typedef unsigned long long DAP_OFFSET;
typedef unsigned long long DAP_OPAQUE;
typedef unsigned long long DAP_BITMAP;
typedef void * DAP_PVOID;

typedef unsigned long DAP_CREATE_MODE;
typedef unsigned long DAP_FLAGS;

/*
 * Machine-Dependent types for Linux on x86
 */
#include <asm/types.h>
typedef __u64 DAP_UINT64;
typedef __u32 DAP_UINT32;
typedef __u16 DAP_UINT16;
typedef __u8 DAP_UINT8;

typedef union {
 DAP_UINT64 AddressBits;
 DAP_PVOID Address;
} DAP_PVOID64;

#endif /* _DAFS_API_PD_H_ */

man_pages.txt Sat Nov 17 16:19:09 2001 22

/*
 * Copyright (C) 2000, 2001 DAFS Collaborative
 *
 * Direct Access File System Application Programming Interface (DAFS API)
 * sample header file: dafs_api_pd.h -- Solaris version
 *
 * Abstract:
 *
 * Platform-dependent type definitions - an example.
 *
 * N.B.: This file contains sample definitions, and is not
 * necessarily correct for any particular hardware/software
 * combination.
 */
#ifndef _DAFS_API_PD_H_
#define _DAFS_API_PD_H_

/*
 * Fundamental types
 */
typedef char DAP_CHAR;
typedef unsigned char DAP_UCHAR;
typedef unsigned int DAP_BOOLEAN;
typedef unsigned int DAP_COUNT;
typedef unsigned long long DAP_LENGTH;
typedef unsigned long long DAP_OFFSET;
typedef unsigned long long DAP_OPAQUE;
typedef unsigned long long DAP_BITMAP;
typedef void * DAP_PVOID;

typedef unsigned long DAP_CREATE_MODE;
typedef unsigned long DAP_FLAGS;

/*
 * Machine-Dependent types for Solaris on Sparc
 */
#include <sys/types.h>
typedef uint64_t DAP_UINT64;
typedef uint32_t DAP_UINT32;
typedef uint16_t DAP_UINT16;
typedef uint8_t DAP_UINT8;

/*
 * The DAP_PVOID64 is a special problem here!
 */
#ifdef _ILP32 /* _ILP32 32 bit int32/long32/ptr32 model */
/* Big-endian 32bit model: address must be right-justified in 64bit word */
typedef union {
 DAP_UINT64 AddressBits; /* only the right 32 bits used */
 DAP_UINT64 Address; /* Note: not a DAP_PVOID type */
 /* cast required */
} DAP_PVOID64;

#else /* _LP64 64 bit int32/long64/ptr64 model */

typedef union {
 DAP_UINT64 AddressBits;
 DAP_PVOID Address;
} DAP_PVOID64;
#endif

#endif /* _DAFS_API_PD_H_ */

man_pages.txt Sat Nov 17 16:19:09 2001 23

/*
 * Copyright (C) 2000, 2001 DAFS Collaborative
 *
 * Direct Access File System Application Programming Interface (DAFS API)
 * sample header file: dafs_api_pd.h -- Windows version
 *
 * Abstract:
 *
 * Platform-dependent type definitions - an example.
 *
 * N.B.: This file contains sample definitions, and is not
 * necessarily correct for any particular hardware/software
 * combination.
 */
#ifndef _DAFS_API_PD_H_
#define _DAFS_API_PD_H_

/*
 * Fundamental types
 */
typedef char DAP_CHAR;
typedef unsigned char DAP_UCHAR;
typedef unsigned int DAP_BOOLEAN;
typedef unsigned int DAP_COUNT;
typedef unsigned long long DAP_LENGTH;
typedef unsigned long long DAP_OFFSET;
typedef unsigned long long DAP_OPAQUE;
typedef unsigned long long DAP_BITMAP;
typedef void * DAP_PVOID;

typedef unsigned long DAP_CREATE_MODE;
typedef unsigned long DAP_FLAGS;

/*
 * Machine-Dependent types for Windows32 and Windows64.
 */
#if Windows
typedef unsigned __int64 DAP_UINT64;
typedef unsigned __int32 DAP_UINT32;
typedef unsigned __int16 DAP_UINT16;
typedef unsigned __int8 DAP_UINT8;

typedef union {
 DAP_UINT64 AddressBits;
 DAP_PVOID Address;
} DAP_PVOID64;

#endif /* _DAFS_API_PD_H_ */

man_pages.txt Sat Nov 17 16:19:09 2001 24

dap_async_listio

 Initiate a list of asynchronous I/O operations.

DAP_ERROR
dap_async_listio(
 DAP_COUNT io_count,
 DAP_IO_REQUEST **io_requests,
 DAP_CG_HANDLE cg_handle,
 DAP_IO_RESULT **io_descs,
 DAP_UINT32 usec_window,
 DAP_UINT32 num_completions);

Description

 Initiates a list of asynchronous read and/or write operations
 and returns control to the calling program. These operations
 continue concurrently with other activity of the process.
 This interface is unlike dap_async_read() and dap_async_write()
 in that it is fully general, supporting:

 o scatter/gather to/from disjoint regions of a file
 o scatter/gather to/from discontiguous application
 memory regions
 o initiation of multiple I/O operations, possibly to
 a number of different files
 o separate completion status for each I/O operation

 The I/O requests are specified by the array of pointers to
 DAP_IO_REQUEST structures indicated by io_requests. The results
 are stored in the array of pointers to DAP_IO_RESULT structures
 indicated by io_descs. These arrays parallel each other and
 must contain the same number of entries, which is indicated by
 io_count. Each DAP_IO_RESULT corresponds to its counterpart
 DAP_IO_REQUEST, and is used to reap the results when the I/O
 has completed. The completion information can be reaped by
 the use of the dap_cg_wait() and dap_cg_batchwait() interfaces,
 which return pointer(s) to the DAP_IO_RESULT structures which
 completed (assuming that cg_handle was non-NULL). dap_cg_wait()
 returns the DAP_IO_RESULTs one at a time, while dap_cg_batchwait()
 returns pointers to a number of DAP_IO_RESULT structures.
 The order in which the completions will return is not
 specified. The application is responsible for remembering
 which DAP_IO_RESULT corresponds to which DAP_IO_REQUEST
 (for which the dap_app_private field of the DAP_IO_RESULT
 should be useful).

 There are three ways to reap I/O completions if cg_handle
 was non-NULL:

 o dap_cg_wait() awaits any single DAP_IO_RESULT
 o dap_cg_done() polls for any single DAP_IO_RESULT
 o dap_cg_batchwait() awaits a number of DAP_IO_RESULTs

 There are two methods for reaping completions of I/Os that
 were issued using a NULL cg_handle:

 o dap_io_wait() awaits a specific DAP_IO_RESULT
 o dap_io_done() polls a specific DAP_IO_RESULT

 Noto Bene: Both atomic append and non-blocking modes
 are silently ignored by dap_async_listio(). In other
 words, the use of the DAP_APPEND and DAP_NONBLOCK flags

man_pages.txt Sat Nov 17 16:19:09 2001 25

 when obtaining file handles from dap_open_file() has no
 effect on the behavior of dap_async_listio().

Arguments

 io_count indicates the number of pointers to DAP_IO_REQUEST
 structures and pointers to DAP_IO_RESULT structures being
 passed in by the caller, and must be greater than zero.

 io_requests is the address of an array of pointers to
 DAP_IO_REQUEST structures, providing the pertinent information
 for each I/O operation being requested. Each structure
 thus pointed to is a variable-sized structure containing
 elements describing scatter/gather to both the file and
 application memory, and contains:

 dap_file_handle - a DAFS file handle as returned by the
 dap_open_file() or dap_open_nattr() calls.

 dap_write_request - a boolean indicating whether this
 is a write request (zero indicates a read request).

 dap_num_file_chunks - the number of DAP_FILE_DESC structures
 included in the array of file_chunks. This provides
 scatter or gather within the file indicated by file_handle.

 dap_num_mem_chunks - the number of DAP_MEM_DESC structures
 included in the array of mem_chunks.

 dap_file_chunks - a contiguous array of DAP_FILE_DESC
 structures, describing the file regions to (or from)
 which I/O should be done, each containing two fields
 describing the target range within the file: file_offset
 and byte_count. There is also a third field,
 dap_cache_hint, composed of bit flags that provide
 suggestions that may allow servers to optimize workload
 handling and aid cache management. Undefined bits should
 be zero. The bit definitions are enumerated in dafs_api.h,
 and indicate the likelihood of that a given chunk of a
 file will be read or written again in the near future.

 dap_mem_chunks - a contiguous array of DAP_MEM_DESC
 structures, describing the application memory regions
 to (or from) which I/O should be done, each containing
 three fields: dap_mem_handle, dap_bufferp, and
 dap_buffer_len.

 cg_handle is a completion group handle used to await the
 completion of the requested operation, and may be NULL.

 io_descs is the address of an array of pointers to
 DAP_IO_RESULT structures, which upon successful return from
 dap_async_listio() can be used to await completion of this
 operation. In no case is the dap_app_private field of these
 structures modified by the provider. A non-zero dap_error
 field indicates that there was an error performing the
 requested write; otherwise, dap_length contains the number
 of bytes actually written to the file. Other fields are
 undefined and should not be referenced.

 usec_window is a hint indicating that the application is
 willing to allow a certain amount of time to complete the
 I/O. This hint may enable the server to optimize the
 scheduling of data transfers. A value of zero provides
 default I/O scheduling behavior. The routine dap_expedite()

man_pages.txt Sat Nov 17 16:19:09 2001 26

 may be used to request that a previously issued I/O be
 processed immediately (in other words, that its usec_window
 be changed to zero).

 num_completions is a hint indicating that the application
 is likely to want to reap its I/O completions in groups.
 This hint allows both server and client to optimize the
 handling of completions. Values less than or equal to one
 provide default behavior.

Returns

 Returns zero on success. Otherwise, one of the error values
 below may be returned, either directly from this call or
 indirectly through the dap_error field of the DAP_IO_RESULT
 supplied by the application. Note that there are no partial
 failures; in other words, if an error is returned from
 dap_async_listio() either no I/Os have been initiated, or
 a catastrophic and unrecoverable transport failure has occurred.
 If there are problems with individual I/O requests, these
 will manifest as non-zero values in the dap_error field
 of the DAP_IO_RESULT when the I/O is reaped.

See Also

 dap_cg_done(), dap_cg_wait(), dap_io_done(), dap_io_wait(),
 and dap_cg_batchwait(), dap_expedite().

Errors

 DAP_ERROR_INVALID_FILE_HANDLE
 file_handle isn’t a valid DAFS file handle.

 DAP_ERROR_INVALID_MEM_HANDLE
 Some entry in the mem_desc has an invalid registered
 memory handle.

 DAP_ERROR_INVALID_CG_HANDLE
 The completion group handle was invalid.

 DAP_ERROR_BAD_ARG
 The io_count was less than or equal to zero.

 DAP_ERROR_UNREGISTERED_MEM
 Some entry in the DAP_MEM_DESC is not valid. Either
 the dap_bufferp is not within a valid registered
 memory virtual region, or the end of the buffer
 extends beyond the memory region referred to by
 the memory handle, or a NULL dap_mem_handle was
 given and the Provider was unable to register the
 memory region on the fly.

 DAP_ERROR_IO_OVERLAP
 This request attempts to write to an area that
 overlaps a pending write request, possibly leading
 to undefined results due to the lack of ordering
 guarantees among simultaneous pending I/O requests.
 Note that it may not be possible for the Provider to
 detect overlap with previously issued I/Os, and that
 this condition should be avoided by the application.

 DAP_ERROR_LOCKED
 I/O attempt to a locked region.

 DAP_ERROR_WRITE_TOOBIG

man_pages.txt Sat Nov 17 16:19:09 2001 27

 This operation is being done on a file opened for
 append mode, and the size of the write exceeds
 the maximum for atomic append operations.

 DAP_ERROR_FBIG
 This operation would exceed the maximum size supported,
 or would exceed the resources available on the server.

 DAP_ERROR_DQUOT
 This operation would exceed a resource (quota) limit.

 DAP_ERROR_IO
 There was a hard and unrecoverable media (disk) error.

 DAP_ERROR_NXIO
 There was no such device or address (perhaps hardware
 was taken off-line).

 DAP_ERROR_NODEV
 The operation is not supported by the device (such
 as writing to read-only media).

 DAP_ERROR_TRANSPORT_FAILURE
 A catastrophic and unrecoverable transport failure
 has occurred.

 Other DAP_ERROR values may also be returned.

man_pages.txt Sat Nov 17 16:19:09 2001 28

dap_async_read

 Asynchronous file read operation.

DAP_ERROR
dap_async_read(
 DAP_FILE_HANDLE file_handle,
 DAP_OFFSET file_offset,
 DAP_COUNT io_count,
 const DAP_MEM_DESC *mem_desc,
 DAP_CG_HANDLE cg_handle,
 DAP_IO_RESULT *io_desc);

Description

 Initiates one asynchronous read and returns control to the
 calling program. The read operation continues concurrently
 with other activity of the process, attempting to read data
 from the file referenced by the file handle at an offset
 of file_offset into the buffer or buffers indicated by
 mem_desc.

 The result of the asynchronous operation is stored in the
 structure pointed to by io_desc.

 There are a variety of interfaces available to reap I/O
 completions if cg_handle was non-NULL:

 o dap_cg_wait() awaits any single DAP_IO_RESULT
 o dap_cg_done() polls for any single DAP_IO_RESULT
 o dap_cg_batchwait() awaits a number of DAP_IO_RESULTs

 There are two methods for reaping completions of I/Os that
 were issued using a NULL cg_handle:

 o dap_io_wait() awaits a specific DAP_IO_RESULT
 o dap_io_done() polls a specific DAP_IO_RESULT

Arguments

 file_handle is a DAFS file handle as returned by the
 dap_open_file() or dap_open_nattr() calls.

 file_offset is the offset in the file from which to read data.

 io_count is the number of DAP_MEM_DESC structures
 in the array that mem_desc points to, and must be greater than
 zero.

 mem_desc is pointer to a (vector of) descriptor(s) for the
 asynchronous I/O operations. Each entry in the vector contains:

 dap_mem_handle - a DAFS memory handle that is associated
 with the buffer pointer and length. If
 DAP_NULL_MEM_HANDLE is supplied, the provider will
 register and bind the memory on the fly; it may cache
 these mappings to speed later operations.

 dap_bufferp - a buffer pointer to somewhere within
 the registered memory region referred to by the
 DAFS memory handle.

 dap_buffer_len - the length in bytes of the buffer.

man_pages.txt Sat Nov 17 16:19:09 2001 29

 cg_handle is a completion group handle used to await the
 completion of the requested operation, and may be NULL.

 io_desc is a pointer to a DAP_IO_RESULT structure, which
 upon successful return from dap_async_read() can be used
 to await completion of this operation. In no case is
 dap_app_private modified by the provider. A non-zero
 dap_error field indicates that there was an error performing
 the requested read; otherwise, dap_length contains the
 number of bytes actually read from the file. Other fields
 are undefined and should not be referenced.

Returns

 Returns zero on success. Otherwise, one of the error values
 below may be returned, either directly from this call or
 indirectly through the dap_error field of the DAP_IO_RESULT
 supplied by the application.

See Also

 dap_cg_done(), dap_cg_wait(), dap_io_done(), dap_io_wait(),
 and dap_cg_batchwait().

Errors

 DAP_ERROR_INVALID_FILE_HANDLE
 file_handle isn’t a valid DAFS file object.

 DAP_ERROR_INVALID_MEM_HANDLE
 Some entry in the mem_desc has an invalid registered
 memory handle.

 DAP_ERROR_UNREGISTERED_MEM
 Some entry in the DAP_MEM_DESC is not valid. Either
 the dap_bufferp is not within a valid registered
 memory virtual region, or the end of the buffer
 extends beyond the memory region referred to by
 the memory handle, or a NULL dap_mem_handle was
 given and the Provider was unable to register the
 memory region on the fly.

 DAP_ERROR_BAD_ARG
 The io_count was less than or equal to zero.

 DAP_ERROR_WOULD_BLOCK
 The file being read was opened with the DAP_NONBLOCK
 flag, and this attempt to initiate asynchronous I/O
 would have to block due to either flow control or
 resource exhaustion.

 DAP_ERROR_INVALID_CG_HANDLE
 The completion group handle was invalid.

 DAP_ERROR_IO_OVERLAP
 This request attempts to write to an area that
 overlaps a pending write request, possibly leading
 to undefined results due to the lack of ordering
 guarantees among simultaneous pending I/O requests.

 DAP_ERROR_IO
 There was a hard and unrecoverable media (disk) error.

 DAP_ERROR_TRANSPORT_FAILURE

man_pages.txt Sat Nov 17 16:19:09 2001 30

 A catastrophic and unrecoverable transport failure
 has occurred.

 Other DAP_ERROR values may also be returned.

man_pages.txt Sat Nov 17 16:19:09 2001 31

dap_async_read_dir

 Read some number of directory entries.

DAP_ERROR
dap_async_read_dir(
 DAP_DIRECTORY_HANDLE dir_handle,
 DAP_OFFSET cookie,
 DAP_OPAQUE cookie_verifier,
 DAP_MEM_HANDLE mem_handle,
 DAP_LENGTH size,
 DAP_READDIR_RESULT *resultp,
 DAP_CG_HANDLE cg_handle,
 DAP_IO_RESULT *io_desc);

Description

 This routine reads some number of entries from the directory
 indicated by dir_handle. The application provides some
 number of bytes of (registered) memory and a cookie of zero
 to begin reading a directory. The provider will return a
 DAP_READDIR_RESULT structure, which contains a cookie
 verified (see below), a flag indicating when the last item
 has been read, the number of items read, and a vector of
 DAP_DIRENTRY structures containing the actual directory
 data. The directory data consists of a number of fixed-size
 DAP_DIRENTRY structures, each containing the DAP_FILETYPE
 of the file system object, a pointer to its NUL-terminated
 name and an opaque cookie to be passed to a subsequent call
 to dap_async_read_dir() et al. to access the remaining
 directory entries.

 There are no further entries to be read from the directory
 indicated by dir_handle when the dap_end_flag is set in
 the DAP_READDIR_RESULT structure.

 There are a variety of interfaces available to reap I/O
 completions if cg_handle was non-NULL:

 o dap_cg_wait() awaits any single DAP_IO_RESULT
 o dap_cg_done() polls for any single DAP_IO_RESULT
 o dap_cg_batchwait() awaits a number of DAP_IO_RESULTs

 There are two methods for reaping completions of I/Os that
 were issued using a NULL cg_handle:

 o dap_io_wait() awaits a specific DAP_IO_RESULT
 o dap_io_done() polls a specific DAP_IO_RESULT

Arguments

 dir_handle is a DAFS directory handle returned from the
 dap_open_dir() call, and indicates the directory
 which is to be read.

 cookie is a value that represents where the operation should
 start within the directory. A value of 0 (zero) for the
 cookie is used to start reading at the beginning of the
 directory. For subsequent requests, the caller specifies
 a cookie value that is provided by the server in response
 to a previous request
 (dap_readdir_result.dap_entry[index].dap_direntry_cookie).

man_pages.txt Sat Nov 17 16:19:09 2001 32

 cookie_verifier should be set to 0 (zero) when the cookie
 value is 0 (zero) on the first directory read. On subsequent
 requests, it should be a cookieverf as returned by the
 server (dap_readdir_result.dap_cookiev). The cookie_verifier
 must match that returned by the read operation in which
 the cookie was acquired.

 mem_handle is a DAFS memory handle that is associated with
 the application buffer pointed to by resultp, and may be
 NULL.

 size is the length in bytes of the application buffer
 pointed to by resultp.

 resultp points to the application buffer, a variable-size
 DAP_READDIR_RESULT structure. Upon successful completion,
 this contains:

 dap_cookiev - the cookie verifier returned by the server

 dap_end_flag - set to non-zero when the last entry in
 the directory has been read.

 dap_num_entries - the number of valid entires in the
 variable-size dap_entry array.

 dap_entry - the output array of DAP_DIRENTRY structures,
 containing dap_num_entries valid members. Each contains:

 dap_direntry_type - indicating the DAP_FILETYPE of
 this entry.

 dap_direntry_cookie - an opaque cookie to be handed
 to a subsequent call to any of the directory reading
 routines in order to obtain the next DAP_DIRENTRY.

 dap_direntry_name - a pointer into this
 application-managed storage, to the NUL-terminated
 name of this file system object.

 dap_direntry_attrp - a pointer into this
 application-managed storage, to the requested
 attributes of this file system object. This pointer
 will always be NULL when the attributes are obtained
 with this interface (see dap_async_read_dir2() and
 dap_read_dir2()).

 cg_handle is a completion group handle used to await the
 completion of the requested operation, and may be NULL.

 io_desc is a pointer to a DAP_IO_RESULT structure, which
 upon successful return from dap_async_read_dir() can be
 used to await completion of this operation. In no case is
 dap_app_private modified by the provider. A non-zero
 dap_error field indicates that there was an error performing
 the requested read. The contents of other fields is undefined.

Returns

 Returns zero on success. Otherwise, one of the error values
 below may be returned, either directly from this call or
 indirectly through the dap_error field of the DAP_IO_RESULT
 supplied by the application.

See Also

man_pages.txt Sat Nov 17 16:19:09 2001 33

 dap_cg_done(), dap_cg_wait(), dap_io_done(), dap_io_wait(),
 and dap_cg_batchwait().

Errors

 DAP_ERROR_INVALID_DIR_HANDLE
 The base_dir_handle given was invalid.

 DAP_ERROR_INVALID_CG_HANDLE
 The completion group handle was invalid.

 DAP_ERROR_BADCOOKIE
 The cookier/cookie_verifier pair supplied was invalid.

 DAP_ERROR_WOULD_BLOCK
 The directory being read was opened with the DAP_NONBLOCK
 flag, and this attempt to initiate asynchronous I/O
 would have to block due to either flow control or
 resource exhaustion.

 DAP_ERROR_BUFFER_TOO_SMALL
 The number of bytes given was not sufficient to hold
 even a single DAP_DIRENTRY and its name. The application
 should try again using a larger buffer.

 DAP_ERROR_IO
 There was a hard and unrecoverable media (disk) error.

 DAP_ERROR_TRANSPORT_FAILURE
 A catastrophic and unrecoverable transport failure
 has occurred.

 Other DAP_ERROR values may also be returned.

man_pages.txt Sat Nov 17 16:19:09 2001 34

dap_async_read_dir2

 Read some number of directory entries and their attributes.

DAP_ERROR
dap_async_read_dir2(
 DAP_DIRECTORY_HANDLE dir_handle,
 DAP_OFFSET cookie,
 DAP_OPAQUE cookie_verifier,
 DAP_BITMAP attrs_requested,
 DAP_MEM_HANDLE mem_handle,
 DAP_LENGTH size,
 DAP_READDIR_RESULT *resultp,
 DAP_CG_HANDLE cg_handle,
 DAP_IO_RESULT *io_desc);

Description

 This routine reads some number of entries, along with their
 attributes, from the directory indicated by dir_handle.
 The application provides some number of bytes of (registered)
 memory and a cookie of zero to begin reading a directory.
 The provider will return a DAP_READDIR_RESULT structure,
 which contains a cookie verified (see below), a flag
 indicating when the last item has been read, the number of
 items read, and a vector of DAP_DIRENTRY structures containing
 the actual directory data. The directory data consists of
 a number of fixed-size DAP_DIRENTRY structures, each
 containing the DAP_FILETYPE of the file system object, a
 pointer to its NUL-terminated name and an opaque cookie to
 be passed to a subsequent call to dap_async_read_dir() et al.
 to access the remaining directory entries.

 The attributes desired are specified by setting
 bits of the attrs_requested parameter, and the valid_attrs
 field of the DAP_STAT_DESC indicates which attributes were
 actually returned (which may be fewer than requested).

 There are no further entries to be read from the directory
 indicated by dir_handle when the dap_end_flag is set in
 the DAP_READDIR_RESULT structure.

 There are a variety of interfaces available to reap I/O
 completions if cg_handle was non-NULL:

 o dap_cg_wait() awaits any single DAP_IO_RESULT
 o dap_cg_done() polls for any single DAP_IO_RESULT
 o dap_cg_batchwait() awaits a number of DAP_IO_RESULTs

 There are two methods for reaping completions of I/Os that
 were issued using a NULL cg_handle:

 o dap_io_wait() awaits a specific DAP_IO_RESULT
 o dap_io_done() polls a specific DAP_IO_RESULT

Arguments

 dir_handle is a DAFS directory handle returned from the
 dap_open_dir() call, and indicates the directory which is
 to be read.

 cookie is a value that represents where the operation should
 start within the directory. A value of 0 (zero) for the

man_pages.txt Sat Nov 17 16:19:09 2001 35

 cookie is used to start reading at the beginning of the
 directory. For subsequent requests, the caller specifies
 a cookie value that is provided by the server in response
 to a previous request
 (dap_readdir_result.dap_entry[index].dap_direntry_cookie).

 cookie_verifier should be set to 0 (zero) when the cookie
 value is 0 (zero) on the first directory read. On subsequent
 requests, it should be a cookieverf as returned by the
 server (dap_readdir_result.dap_cookiev). The cookieverf
 must match that returned by the read operation in which
 the cookie was acquired.

 attrs_requested indicates which attributes are desired;
 bits set to one indicate attributes that are requested.

 mem_handle is a DAFS memory handle that is associated with
 the application buffer pointed to by resultp, and may be
 NULL.

 size is the length in bytes of the application buffer
 pointed to by resultp.

 resultp points to the application buffer, a variable-size
 DAP_READDIR_RESULT structure. Upon successful completion,
 this contains:

 dap_cookiev - the cookie verifier returned by the server

 dap_end_flag - set to non-zero when the last entry in
 the directory has been read.

 dap_num_entries - the number of valid entires in the
 variable-size dap_entry array.

 dap_entry - the output array of DAP_DIRENTRY structures,
 containing dap_num_entries valid members. Each contains:

 dap_direntry_type - indicating the DAP_FILETYPE of
 this entry.

 dap_direntry_cookie - an opaque cookie to be handed
 to a subsequent call to any of the directory reading
 routines in order to obtain the next DAP_DIRENTRY.

 dap_direntry_name - a pointer into this
 application-managed storage, to the NUL-terminated
 name of this file system object.

 dap_direntry_attrp - a pointer into this
 application-managed storage, to the requested
 attributes of this file system object.

 cg_handle is a completion group handle used to await the
 completion of the requested operation, and may be NULL.

 io_desc is a pointer to a DAP_IO_RESULT structure, which
 upon successful return from dap_async_read_dir2() can be
 used to await completion of this operation. In no case is
 dap_app_private modified by the provider. A non-zero
 dap_error field indicates that there was an error performing
 the requested read. The contents of other fields is undefined.

Returns

man_pages.txt Sat Nov 17 16:19:09 2001 36

 Returns zero on success. Otherwise, one of the error values
 below may be returned, either directly from this call or
 indirectly through the dap_error field of the DAP_IO_RESULT
 supplied by the application.

See Also

 dap_cg_done(), dap_cg_wait(), dap_io_done(), dap_io_wait(),
 and dap_cg_batchwait().

Errors

 DAP_ERROR_INVALID_DIR_HANDLE
 The base_dir_handle given was invalid.

 DAP_ERROR_INVALID_CG_HANDLE
 The completion group handle was invalid.

 DAP_ERROR_WOULD_BLOCK
 The directory being read was opened with the DAP_NONBLOCK
 flag, and this attempt to initiate asynchronous I/O
 would have to block due to either flow control or
 resource exhaustion.

 DAP_ERROR_BUFFER_TOO_SMALL
 The number of bytes given was not sufficient to hold
 even a single DAP_DIRENTRY with attributes and its name.
 The application should try again using a larger buffer.

 DAP_ERROR_IO
 There was a hard and unrecoverable media (disk) error.

 DAP_ERROR_TRANSPORT_FAILURE
 A catastrophic and unrecoverable transport failure
 has occurred.

 Other DAP_ERROR values may also be returned.

man_pages.txt Sat Nov 17 16:19:09 2001 37

dap_async_write

 Asynchronous file write operation.

DAP_ERROR
dap_async_write(
 DAP_FILE_HANDLE file_handle,
 DAP_OFFSET file_offset,
 DAP_COUNT io_count,
 const DAP_MEM_DESC *mem_desc,
 DAP_CG_HANDLE cg_handle,
 DAP_IO_RESULT *io_desc);

Description

 Initiates one asynchronous write operation and returns
 control to the calling program. The write operation
 continues concurrently with other activity of the process,
 attempting to write data from the buffer or buffers pointed
 to by mem_desc to the file referenced by the file handle
 at an offset of file_offset.

 The result of the asynchronous operation is stored in the structure
 pointed to by io_desc.

 There are a variety of interfaces available to reap I/O
 completions if cg_handle was non-NULL:

 o dap_cg_wait() awaits any single DAP_IO_RESULT
 o dap_cg_done() polls for any single DAP_IO_RESULT
 o dap_cg_batchwait() awaits a number of DAP_IO_RESULTs

 There are two methods for reaping completions of I/Os that
 were issued using a NULL cg_handle:

 o dap_io_wait() awaits a specific DAP_IO_RESULT
 o dap_io_done() polls a specific DAP_IO_RESULT

Arguments

 file_handle is a DAFS file handle as returned by the
 dap_open_file() or dap_open_nattr() calls.

 file_offset is the offset in the file to write the data.
 This parameter is ignored if file_handle was opened with
 the DAP_APPEND option.

 io_count is the number of DAP_MEM_DESC structures
 in the array that mem_desc points to, and must be greater than
 zero.

 mem_desc is pointer to a (vector of) descriptor(s) for the
 asynchronous I/O operations. Each entry in the vector contains:

 dap_mem_handle - a DAFS memory handle that is associated
 with the buffer pointer and length. If
 DAP_NULL_MEM_HANDLE is supplied, the provider will
 register and bind the memory on the fly; it may cache
 these mappings to speed later operations.

 dap_bufferp - a buffer pointer to somewhere within
 the registered memory region referred to by the
 DAFS memory handle.

man_pages.txt Sat Nov 17 16:19:09 2001 38

 dap_buffer_len - the length in bytes of the buffer.

 cg_handle is a completion group handle used to await the
 completion of the requested operation, and may be NULL.

 io_desc is a pointer to a DAP_IO_RESULT structure, which upon
 successful return from dap_async_write() can be used to
 await completion of this operation. In no case is
 dap_app_private modified by the provider. A non-zero
 dap_error field indicates that there was an error performing
 the requested write; otherwise, dap_length contains the number
 of bytes actually written to the file. Other fields are
 undefined and should not be referenced.

Returns

 Returns zero on success. Otherwise, one of the error values
 below may be returned, either directly from this call or
 indirectly through the dap_error field of the DAP_IO_RESULT
 supplied by the application.

See Also

 dap_cg_done(), dap_cg_wait(), dap_io_done(), dap_io_wait(),
 and dap_cg_batchwait().

Errors

 DAP_ERROR_INVALID_FILE_HANDLE
 file_handle isn’t a valid DAFS file handle.

 DAP_ERROR_INVALID_MEM_HANDLE
 Some entry in the mem_desc has an invalid registered
 memory handle.

 DAP_ERROR_INVALID_CG_HANDLE
 The completion group handle was invalid.

 DAP_ERROR_BAD_ARG
 The io_count was less than or equal to zero.

 DAP_ERROR_WOULD_BLOCK
 The file being written was opened with the DAP_NONBLOCK
 flag, and this attempt to initiate asynchronous I/O
 would have to block due to either flow control or
 resource exhaustion.

 DAP_ERROR_UNREGISTERED_MEM
 Some entry in the DAP_MEM_DESC is not valid. Either
 the dap_bufferp is not within a valid registered
 memory virtual region, or the end of the buffer
 extends beyond the memory region referred to by
 the memory handle, or a NULL dap_mem_handle was
 given and the Provider was unable to register the
 memory region on the fly.

 DAP_ERROR_IO_OVERLAP
 This request attempts to write to an area that
 overlaps a pending write request, possibly leading
 to undefined results due to the lack of ordering
 guarantees among simultaneous pending I/O requests.

 DAP_ERROR_LOCKED
 I/O attempt to a locked region.

man_pages.txt Sat Nov 17 16:19:09 2001 39

 DAP_ERROR_WRITE_TOOBIG
 This operation is being done on a file opened for
 append mode, and the size of the write exceeds
 the maximum for atomic append operations.

 DAP_ERROR_FBIG
 This operation would exceed the maximum size supported,
 or would exceed the resources available on the server.

 DAP_ERROR_DQUOT
 This operation would exceed a resource (quota) limit.

 DAP_ERROR_IO
 There was a hard and unrecoverable media (disk) error.

 DAP_ERROR_NXIO
 There was no such device or address (perhaps hardware
 was taken off-line).

 DAP_ERROR_NODEV
 The operation is not supported by the device (such
 as writing to read-only media).

 DAP_ERROR_TRANSPORT_FAILURE
 A catastrophic and unrecoverable transport failure
 has occurred.

 Other DAP_ERROR values may also be returned.

man_pages.txt Sat Nov 17 16:19:09 2001 40

dap_auth_callback

 Register an authentication callback with the DAFS Provider.

DAP_ERROR
dap_auth_callback(
 unsigned int auth_type_mask,
 void * handler_context,
 unsigned int (*dap_auth_handler) (
 void * context,
 unsigned int opcode,
 unsigned int auth_type,
 unsigned int * auth_size,
 unsigned int * auth_data));

Description

 dap_auth_callback() is used by the application to register
 an authentication handling function with the DAFS Provider.
 This handler will be called by the Provider whenever it is
 necessary to authenticate while initiating contact with
 a new server. The handler indicates the method and supplies
 the data to be used in authenticating. A subsequent registration
 will overwrite, or change, the registered handler.

Arguments

 auth_type_mask indicates the type of authentication which
 this callback routine knows how to handle. A separate
 handler may be registered for each of the supported
 authentication type (DAP_AUTH_NONE, DAP_AUTH_TEXT,
 DAP_AUTH_GSS) though since there is no data to be supplied
 in the case of DAP_AUTH_NONE, the handler will never be
 invoked.

 handler_context is a datum which is passed without modification
 to the handler when it is invoked.

 dap_auth_handler is the address of the application-defined
 function to be called when authentication must be done
 (presumably due to a new server being contacted). This
 function is not guaranteed to run in the context of the
 thread which called dap_auth_callback() to register
 dap_auth_handler, and must return zero after supplying the
 authentication data. A non-zero return indicates to the
 Provider that the handler could not supply the requested
 data. The handler may return DAP_ERROR_TOO_SMALL when
 invoked to indicate that the supplied buffer (auth_data)
 was insufficient, after setting auth_size to the size
 desired to allow the Provider to re-try the handler. A
 NULL may be used to unregister (though unregistering the
 handler for DAP_AUTH_NONE makes very little sense).

 context is the value passed in as handler_context when
 the handler was registered with the Provider.

 opcode indicates what operation is being performed,
 and the value will change (in an auth_type-specific way)
 when a multi-step protocol is being executed by multiple
 sequential callback invocations. For DAP_AUTH_TEXT
 handler invocations, opcode is always zero.

 auth_type indicates the type of authentication being attempted.

man_pages.txt Sat Nov 17 16:19:09 2001 41

 auth_size and auth_data are pointers indicating where
 the application should deposit the authentication data,
 and how big the buffer (supplied by the Provider) is.
 auth_size should be treated as an IN/OUT parameter,
 while only the buffer pointed to by auth_data, not the
 pointer itself, should be modified. An error of
 DAP_ERROR_TOO_SMALL may be returned if the Provider
 supplies a buffer of insufficient size; auth_size
 should be set to the desired number of bytes prior to
 returning from the handler.

Returns

 Returns zero on success. Otherwise returns one of the DAFS errors
 listed below.

Bugs

 The details of the various authentication mechanisms supported
 using DAP_AUTH_GSS need to be elaborated, explained, and
 documented.

Errors

 DAP_ERROR_AUTH_TYPE
 Invalid DAFS authentication type

 DAP_ERROR_AUTH_DENIED
 The authentication information was incorrect or
 insufficient.

 Other DAP_ERROR values may also be returned.

man_pages.txt Sat Nov 17 16:19:09 2001 42

dap_cancel_async_op

 Attempts to cancel a previously initiated I/O operation.

DAP_ERROR
dap_cancel_async_op(
 DAP_IO_RESULT *io_desc);

Description

 This call attempts to cancel an outstanding asynchronous
 I/O operation. This may not be possible. In all cases
 the application must wait for the I/O to complete using
 the usual methods, prior to attempting to re-use or free
 any underlying buffers (the typical motivation for I/O
 cancellation).

Arguments

 io_desc is a pointer to the DAP_IO_RESULT structure which
 is being used to retrieve completion information for the
 operation which is being canceled. It is possible that
 the operation in question is being completed as the attempt
 at cancellation is being made, so the caller must await
 completion using the normal means, and check the dap_error
 field to determine the actual fate of the operation.

Returns

 Returns zero on success. Otherwise, one of the error values
 below may be returned. In all cases the caller must await
 completion of the operation and check the dap_error field
 of the DAP_IO_RESULT supplied by the application.

Errors

 DAP_ERROR_INVALID_IO_RESULT
 The operation associated with this DAP_IO_RESULT
 is no longer pending, and may have already completed.

 Other DAP_ERROR values may also be returned.

man_pages.txt Sat Nov 17 16:19:09 2001 43

dap_cg_batchwait

 Block on a completion group, awaiting some number of I/O completions

DAP_ERROR
dap_cg_batchwait(
 DAP_CG_HANDLE cg_handle,
 DAP_TIMEOUT timeout,
 DAP_COUNT *n_results,
 DAP_IO_RESULT **io_desc);

Description

 Blocks for up to a duration of "timeout" awaiting a number
 (n_results) of I/O completions from the specified completion
 group. If timeout is set to DAP_WAIT_NOWAIT, it checks
 and returns whatever is ready, without blocking. If timeout
 is set to DAP_WAIT_FOREVER, it will block until the requested
 number of I/Os complete before returning. Note however
 that (given a timeout other than DAP_WAIT_FOREVER) it is
 not an error for this routine to return fewer completions
 than requested; callers must be prepared to handle this
 situation correctly.

 If I/Os have completed, this routine returns zero and
 updates the DAP_COUNT pointed to by n_results to indicate
 the number of pointers (in the array of pointers indicated
 by io_desc) which are valid. Each of the pointers thus
 returned points to the DAP_IO_RESULT structure that was
 originally used to initiate the corresponding I/O operation,
 filled in with the results for the completed operation.

 Note that if n_results points to a count of one (1), this
 this function is equivalent to dap_cg_wait().

Arguments

 cg_handle the completion group handle on which to check
 for I/O completions.

 timeout indicates how long to wait for an I/O completion
 before returning DAP_ERROR_PENDING_IO. DAP_WAIT_NOWAIT
 is a polling operation and DAP_WAIT_FOREVER will block
 until n_results completions are reaped.

 n_results is a pointer to a DAP_COUNT variable indicating
 the desired number of completions to reap, which is also
 the number of entries in the array of pointers to DAP_IO_RESULT
 structures whose address is supplied in io_desc. Upon
 return it is set to the number of completions that were
 actually reaped.

 io_desc is the address of an array of pointers to DAP_IO_RESULT
 structures, which will be filled in to point to the actual
 structures that were supplied to the call originating the
 asynchronous operation (dap_async_read(), dap_async_write(),
 dap_async_listio(), etc.).

Returns

 Returns zero on success. Otherwise returns one of the error values
 listed below. An error from the asynchronous operation may be
 contained in the dap_error field of the DAP_IO_RESULT.

man_pages.txt Sat Nov 17 16:19:09 2001 44

Errors

 DAP_ERROR_PENDING_IO
 The timeout expired before an I/O operation in
 the completion group completed.

 DAP_ERROR_INVALID_CG_HANDLE
 The completion group handle was invalid.

 DAP_ERROR_TRANSPORT_FAILURE
 A catastrophic and unrecoverable transport failure
 has occurred.

 Other DAP_ERROR values may also be returned.

man_pages.txt Sat Nov 17 16:19:09 2001 45

dap_cg_done

 Checks for any I/O completion with completion group.

DAP_ERROR
dap_cg_done(
 DAP_CG_HANDLE cg_handle,
 DAP_IO_RESULT **io_desc);

Description

 Checks for an I/O completion in a completion group. This
 is functionally equivalent to a call to dap_cg_wait() with
 an instantaneous timeout (DAP_WAIT_NOWAIT). If an I/O has
 completed, this routine returns zero and the pointer
 referenced by io_desc has been updated to point to the
 DAP_IO_RESULT used to initiate the I/O, which has been
 filled in with the results for the completed operation.

Arguments

 cg_handle the completion group handle on which to check
 for I/O completions.

 io_desc is the address of a pointer to a DAP_IO_RESULT
 structure, which will be filled in to point to an actual
 structure that was supplied to the call originating the
 asynchronous operation (dap_async_read(), dap_async_write(),
 dap_async_listio(), etc.).

Returns

 Returns zero on success. Otherwise returns one of the error values
 listed below. An error from the asynchronous operation may be
 contained in the dap_error field of the DAP_IO_RESULT.

Errors

 DAP_ERROR_INVALID_CG_HANDLE
 The completion group handle was invalid.

 DAP_ERROR_PENDING_IO
 There have been no I/O completions for this completion group.
 Try again later.

 DAP_ERROR_NO_IO_PENDING
 There are no I/O operations attached to the completion group.

 DAP_ERROR_IO_CANCELLATION
 The operation associated with this DAP_IO_RESULT
 was successfully cancelled. This error will only
 appear in io_desc->dap_error.

 DAP_ERROR_TRANSPORT_FAILURE
 A catastrophic and unrecoverable transport failure
 has occurred.

 Other DAP_ERROR values may also be returned.

man_pages.txt Sat Nov 17 16:19:09 2001 46

dap_cg_wait

 Block for an I/O completion using a completion group.

DAP_ERROR
dap_cg_wait(
 DAP_CG_HANDLE cg_handle,
 DAP_TIMEOUT timeout,
 DAP_IO_RESULT **io_desc);

Description

 Blocks for up to a duration of "timeout" awaiting an I/O
 completion in the requested completion group. If timeout
 is set to DAP_WAIT_NOWAIT, it checks and returns without
 blocking. If timeout is set to DAP_WAIT_FOREVER, it will
 block until an I/O completes before returning. If an I/O
 has completed, this routine returns zero and the pointer
 referenced by io_desc has been updated to point to the
 DAP_IO_RESULT used to initiate the I/O, which has been
 filled in with the results for the completed operation.

Arguments

 cg_handle the completion group handle on which to check
 for I/O completions.

 timeout indicates how long to wait for an I/O completion
 before returning DAP_ERROR_PENDING_IO. If timeout is
 equal to DAP_WAIT_NOWAIT this call is equivalent to
 dap_cg_done(). If timeout is equal to DAP_WAIT_FOREVER
 it will block until an I/O completes.

 io_desc is the address of a pointer to a DAP_IO_RESULT
 structure, which will be filled in to point to an actual
 structure that was supplied to the call originating the
 asynchronous operation (dap_async_read(), dap_async_write(),
 dap_async_listio(), etc.).

Returns

 Returns zero on success. Otherwise returns one of the error values
 listed below. An error from the asynchronous operation may be
 contained in the dap_error field of the DAP_IO_RESULT.

Errors

 DAP_ERROR_PENDING_IO
 The timeout expired before an I/O operation in
 the completion group completed.

 DAP_ERROR_INVALID_CG_HANDLE
 The completion group handle was invalid.

 DAP_ERROR_IO_CANCELLATION
 The operation associated with this DAP_IO_RESULT
 was successfully cancelled. This error will only
 appear in io_desc->dap_error.

 DAP_ERROR_TRANSPORT_FAILURE
 A catastrophic and unrecoverable transport failure
 has occurred.

man_pages.txt Sat Nov 17 16:19:09 2001 47

 Other DAP_ERROR values may also be returned.

man_pages.txt Sat Nov 17 16:19:09 2001 48

dap_chmod

 Change the mode of a file or directory.

DAP_ERROR
dap_chmod(
 DAP_DIRECTORY_HANDLE dir_handle,
 DAP_CRED_HANDLE cred_handle,
 const DAP_CHAR *path,
 DAP_CREATE_MODE mode);

Description

 This routine sets the permission bits of the file or directory
 specified by path and dir_handle.

 The directory handle and path together indicate the target
 of this call. If an absolute path is given, then the
 directory handle may be NULL; the DAFS name service will
 be used to locate the file. If the path is relative, it
 is interpreted in relation to the directory handle. The
 DAFS API has no concept of "current working directory"
 since that is not thread-safe.

Arguments

 dir_handle is a DAFS directory handle returned from the
 dap_open_dir() call.

 cred_handle is an optional credential handle obtained with
 the dap_create_credential() routine. If NULL is supplied,
 the provider will use default credentials if such exist.

 path is interpreted relative to dir_handle, and must lead
 to a valid file or directory.

 mode specifies the permission bits to be set; these are
 POSIX-style permission bits.

Returns

 Returns zero on success. Otherwise returns one of the error values
 listed below.

Errors

 DAP_ERROR_INVALID_DIR_HANDLE
 The base_dir_handle given was invalid.

 DAP_ERROR_INVALID_CRED_HANDLE
 The credential handle was invalid.

 DAP_ERROR_PERM
 The credential supplied was not sufficient to
 allow the requested operation.

 DAP_ERROR_ACCESS
 The supplied credential does not allow access
 to the path requested.

 DAP_ERROR_LOOP
 Too many symbolic links were encountered in
 translating the path.

man_pages.txt Sat Nov 17 16:19:09 2001 49

 DAP_ERROR_UNKNOWN_LOCATION
 The location for the target file cannot be
 found in the DAFS name service.

 DAP_ERROR_UNKNOWN_SERVER
 The server containing the target file was located
 by the DAFS name service, but cannot be resolved to
 a transport address.

 DAP_ERROR_UNREACHABLE
 The server containing the target file cannot be
 reached. This could be temporary (a broken cable)
 or permanent (a configuration error).

 DAP_ERROR_UNKNOWN_PATH
 The path provided does not resolve to a DAFS server.

 DAP_ERROR_PATH
 One of the components in the path does not exist.

 DAP_ERROR_NAMETOOLONG
 The path name exceeds the maximum length supported.

 DAP_ERROR_NOT_DIRECTORY
 A pathname component is not a directory.

 Other DAP_ERROR values may also be returned.

man_pages.txt Sat Nov 17 16:19:09 2001 50

dap_chown

 Change the owner and group attributes of a file or directory.

DAP_ERROR
dap_chown(
 DAP_DIRECTORY_HANDLE dir_handle,
 DAP_CRED_HANDLE cred_handle,
 const DAP_CHAR *path,
 const DAP_CHAR *owner,
 const DAP_CHAR *group);

Description

 This routine sets the owner and group attributes of a
 file or directory.

 The directory handle and path together indicate the target
 of this call. If an absolute path is given, then the
 directory handle may be NULL; the DAFS name service will
 be used to locate the file. If the path is relative, it
 is interpreted in relation to the directory handle. The
 DAFS API has no concept of "current working directory"
 since that is not thread-safe.

Arguments

 dir_handle is a DAFS directory handle returned from the
 dap_open_dir() call.

 cred_handle is an optional credential handle obtained with
 the dap_create_credential() routine. If NULL is supplied,
 the provider will use default credentials if such exist.

 path is interpreted relative to dir_handle, and must lead
 to a valid file or directory.

 owner and group point to representations of the desired
 owner and group attributes of the file or directory indicated
 by dir_handle and path. Either may be NULL, causing that
 parameter to be ignored.

Returns

 Returns zero on success. Otherwise returns one of the error values
 listed below.

Errors

 DAP_ERROR_INVALID_DIR_HANDLE
 The base_dir_handle given was invalid.

 DAP_ERROR_INVALID_CRED_HANDLE
 The credential handle was invalid.

 DAP_ERROR_PERM
 The credential supplied was not sufficient to
 allow the requested operation.

 DAP_ERROR_ACCESS
 The supplied credential does not allow access
 to the path requested.

man_pages.txt Sat Nov 17 16:19:09 2001 51

 DAP_ERROR_LOOP
 Too many symbolic links were encountered in
 translating the path.

 DAP_ERROR_UNKNOWN_LOCATION
 The location for the target file cannot be
 found in the DAFS name service.

 DAP_ERROR_UNKNOWN_SERVER
 The server containing the target file was located
 by the DAFS name service, but cannot be resolved to
 a transport address.

 DAP_ERROR_UNREACHABLE
 The server containing the target file cannot be
 reached. This could be temporary (a broken cable)
 or permanent (a configuration error).

 DAP_ERROR_UNKNOWN_PATH
 The path provided does not resolve to a DAFS server.

 DAP_ERROR_PATH
 One of the components in the path does not exist.

 DAP_ERROR_NAMETOOLONG
 The path name exceeds the maximum length supported.

 DAP_ERROR_NOT_DIRECTORY
 A pathname component is not a directory.

 Other DAP_ERROR values may also be returned.

man_pages.txt Sat Nov 17 16:19:09 2001 52

dap_close_dir

 Closes a directory object.

DAP_ERROR
dap_close_dir(
 DAP_DIRECTORY_HANDLE dir_handle);

Description

 Upon successful return, the directory referred to by
 dir_handle is no longer accessible. References in progress,
 whether reads or modifications, may be aborted. The client
 should wait for any outstanding operations and shut down
 gracefully.

Arguments

 dir_handle is a DAFS directory handle (or named attribute
 directory handle) as returned by the dap_open_dir() call.

Returns

 Returns zero on success. Otherwise returns one of the error
 values listed below.

Errors

 DAP_ERROR_INVALID_DIR_HANDLE
 dir_handle is not a valid directory handle.

 DAP_ERROR_TRANSPORT_FAILURE
 A catastrophic and unrecoverable transport failure
 has occurred.

 Other DAP_ERROR values may also be returned.

man_pages.txt Sat Nov 17 16:19:09 2001 53

dap_close_file

 Closes a file (or named attribute).

DAP_ERROR
dap_close_file(
 DAP_FILE_HANDLE file_handle);

Description

 The file indicated by file_handle is closed. Upon successful
 completion, the file object referred to by file_handle is
 no longer accessible. Any outstanding operations on this
 file may be aborted. The application should wait for any
 outstanding operations and shut down gracefully.

Arguments

 file_handle is a DAFS file handle as returned by the
 dap_open_file() or dap_open_nattr() calls.

Returns

 Returns zero on success. Otherwise returns one of the error
 values listed below.

Errors

 DAP_ERROR_INVALID_FILE_HANDLE
 file_handle isn’t a valid DAFS file handle.

 DAP_ERROR_TRANSPORT_FAILURE
 A catastrophic and unrecoverable transport failure
 has occurred.

 Other DAP_ERROR values may also be returned.

man_pages.txt Sat Nov 17 16:19:09 2001 54

dap_create_cg

 Creates a DAFS I/O completion group.

DAP_ERROR
dap_create_cg(
 DAP_CG_HANDLE *cg_handle,
 DAP_COUNT cg_entries);

Description

 Creates a handle to which DAFS async I/O operations may be
 attached for the purpose of I/O completion notification.

Arguments

 cg_handle is a pointer to a DAP_CG_HANDLE to be returned.

 cg_entries is a hint from the application to the provider
 that the completion group being created ought to be able
 to handle the indicated number of entries without overflowing
 or blocking. This call may fail if the provider cannot
 create a sufficiently large completion group. This parameter
 is advisory; if a zero is supplied, the provider will
 attempt to use a reasonable size.

Returns

 Returns zero on success. Otherwise returns one of the error values
 listed below.

 The returned handle represents a completion group to which
 I/O operations can be attached at I/O initiation time
 (e.g.: dap_async_read() and dap_async_write()).

Errors

 DAP_ERROR_NO_RESOURCES
 No resources available to create the completion group
 construct.

 DAP_ERROR_TRANSPORT_FAILURE
 A catastrophic and unrecoverable transport failure
 has occurred.

 Other DAP_ERROR values may also be returned.

man_pages.txt Sat Nov 17 16:19:09 2001 55

dap_create_credential

 Create a credential.

DAP_ERROR
dap_create_credential(
 void *handler_context,
 DAP_CRED_HANDLE *cred_handle);

Description

 DAFS applications can pre-register some number of credentials
 to be used in subsequent operations. This routine creates
 a single credential, represented by the cred_handle, which
 is supplied to other DAFS calls to indicate the caller’s
 intended identification. This call simply returns an
 empty credential handle, which must be initialized using
 the callback registered using dap_cred_callback(). The
 callback is triggered when first contact to a server is
 made, typically upon first use of the empty credential
 handle, but possibly also due to server fail-over or
 data set migration.

Arguments

 handler_context is a datum which is passed without modification
 to the handler registered with dap_cred_callback() when it
 is called to register cred_handle.

 cred_handle is a pointer to a credential handle, which on
 successful return can be used with subsequent I/O operations.

Returns

 Returns zero on success. Otherwise return one of the errors
 listed below.

Errors

 DAP_ERROR_NO_RESOURCES
 The credential cannot be created due to some
 system-imposed limit (for example, the server’s
 limit on credentials per client).

 DAP_ERROR_TRANSPORT_FAILURE
 A catastrophic and unrecoverable transport failure
 has occurred.

 Other DAP_ERROR values may also be returned.

man_pages.txt Sat Nov 17 16:19:09 2001 56

dap_cred_callback

 Register a credential callback with the DAFS Provider.

DAP_ERROR
dap_cred_callback(
 unsigned int (*dap_cred_handler) (
 void * context,
 DAP_CRED_HANDLE cred_handle,
 unsigned int opcode,
 DAP_CRED_TYPE *cred_type,
 DAP_LENGTH *cred_data_len,
 DAP_CRED_DATA *cred_data));

Description

 This routine is used by the application to register a
 credential handling function with the DAFS Provider.
 This handler will be called by the Provider whenever it
 is necessary to supply data to register a credential
 (originally obtained from dap_create_credential()) with
 a server, either on first access with that server or due
 to server fail-over or data set migration.

Arguments

 dap_cred_handler is the address of the application-defined
 function to be called when the credential must be registered.
 This function is not guaranteed to run in the context of the
 thread which called dap_cred_callback() to register the handler,
 and must return zero after supplying the credential data. A
 non-zero return indicates to the Provider that the handler could
 not supply the requested data. The handler may return
 DAP_ERROR_TOO_SMALL when invoked to indicate that the
 supplied buffer (auth_data) was insufficient, after setting
 auth_size to the size desired, to allow the provider to
 re-try the handler.

 context is the value passed in as handler_context when
 cred_handle was first created by dap_create_credential().

 cred_handle is the credential handle obtained from
 dap_create_credential(), which now requires identification
 data in order to be registered.

 opcode indicates which part of a multi-stage operation
 is being performed (see GSS details).

 cred_type is the type of credential to be registered,
 and should be set by the handler.

 cred_data_len is the length in bytes of the identification
 data. It is an IN/OUT parameter, since the buffer is
 allocated by the Provider, and should be set to the
 number of bytes actually used.

 cred_data is a pointer to the buffer to be filled in
 with the identification data.

Returns

 Returns zero on success. Otherwise return one of the errors
 listed below.

man_pages.txt Sat Nov 17 16:19:09 2001 57

Errors

 DAP_ERROR_NO_AUTH
 The application must successfully authenticate
 prior to attempting to create credentials.

 DAP_ERROR_PERM
 No permission to obtain a credential handle
 using the supplied data.

 DAP_ERROR_INVALID_CRED_TYPE
 The type of credential requested is invalid or
 not supported.

 DAP_ERROR_NO_RESOURCES
 The credential cannot be created due to some
 system-imposed limit (for example, the server’s
 limit on credentials per client).

 DAP_ERROR_TRANSPORT_FAILURE
 A catastrophic and unrecoverable transport failure
 has occurred.

 Other DAP_ERROR values may also be returned.

man_pages.txt Sat Nov 17 16:19:09 2001 58

dap_deregister_mem

 Deregisters memory associated with the DAFS memory handle.

DAP_ERROR
dap_deregister_mem(
 DAP_MEM_HANDLE mem_handle);

Description

 This routine is the inverse of dap_register_mem() and
 dap_register_shbuffer(). Memory registrations are per-process,
 so deregistering a shared memory buffer effects only the caller.

Arguments

 mem_handle is a memory handle used to identify the memory
 registration as returned by dap_register_mem() or
 dap_register_shbuffer().

Returns

 Returns zero on success. Otherwise returns one of the error values
 listed below.

See Also
 dap_register_mem(), dap_register_shbuffer().

Errors

 DAP_ERROR_INVALID_MEM_HANDLE
 The mem_handle argument is not a valid registered memory
 handle.

 DAP_ERROR_BOUND_MEMORY
 This memory is in use by an outstanding I/O request.

 Other DAP_ERROR values may also be returned.

man_pages.txt Sat Nov 17 16:19:09 2001 59

dap_destroy_cg

 Destroys a completion group.

DAP_ERROR
dap_destroy_cg(
 DAP_CG_HANDLE cg_handle);

Description

 Destroys a completion group. If successful, the completion
 group handle is destroyed and any associated resources are
 released. Subsequent use of this handle will produce an
 error. Pending operations may be aborted. The client
 should wait for all pending operations and clean up
 gracefully.

Arguments

 cg_handle is a completion group handle as returned by
 dap_create_cg().

Returns

 Returns zero on success. Otherwise returns one of the error values
 listed below.

Errors

 DAP_ERROR_INVALID_CG_HANDLE
 The completion group handle was invalid.

 DAP_ERROR_PENDING_IO
 There is pending I/O on this DAP_CG_HANDLE.

 Other DAP_ERROR values may also be returned.

man_pages.txt Sat Nov 17 16:19:09 2001 60

dap_destroy_credential

 Destroy a credential.

DAP_ERROR
dap_destroy_credential(
 DAP_CRED_HANDLE cred_handle);

Description

 This routine destroys a credential created by
 dap_create_credential(), once it is no longer needed.

Arguments

 cred_handle is a valid credential handle that is no longer
 needed, which is to be destroyed.

Returns

 Returns zero on success. Otherwise return one of the errors
 listed below.

Errors

 DAP_ERROR_INVALID_CRED_HANDLE
 The cred_handle supplied is not valid.

 Other DAP_ERROR values may also be returned.

man_pages.txt Sat Nov 17 16:19:09 2001 61

dap_expedite

 Request immediate processing for a previously
 initiated I/O request.

DAP_ERROR
dap_expedite(
 DAP_IO_REQUEST *io_request);

Description

 This call attempts to cause an outstanding asynchronous
 I/O operation to be processed immediately. This may not
 be possible, as the I/O may have already been processed.
 Caveat: This call is inherently race-prone, so an error
 return is not necessarily reason for concern. In all cases
 the application must wait for the I/O to complete using
 the usual methods.

 This call is useful when used in conjunction with
 dap_async_listio() requests that were issued with a
 non-zero usec_window parameter.

Arguments

 io_desc is a pointer to the DAP_IO_RESULT structure which
 is being used to retrieve completion information for the
 operation which is being canceled.

See Also

 dap_async_listio().

Returns

 Returns zero on success. Otherwise, one of the error values
 below may be returned.

Errors

 DAP_ERROR_INVALID_IO_RESULT
 The operation associated with this DAP_IO_RESULT
 is no longer pending, and may have already completed.

 Other DAP_ERROR values may also be returned.

man_pages.txt Sat Nov 17 16:19:09 2001 62

dap_extensions

 Interface for non-standard DAFS API extensions

DAP_ERROR
dap_extensions(
 unsigned int request_token,
 DAP_PVOID argument_ptr,
 DAP_COUNT argument_size);

Description

 This interface allows the addition of non-standard and
 vendor-unique extensions to the DAFS API in a way that does
 not result in binary compatibility. By implementing all
 non-standard extensions behind this interface, the support
 or lack of support for a given extension can be determined
 at run-time rather than being evidenced by a failure during
 compilation or linkage, which would prevent the application
 from being run at all.

 Applications using this interface should always be prepared
 to handle error returns, since any support hidden within
 this interface is likely to be non-portable and specific
 to a particular vendor or host. Inasmuch as there is no
 central registry for the request_token bit patterns,
 carefully written applications will verify that the provider
 version is the one expected, prior to attempting to access
 other extended functionality.

 All providers must support this interface, though returning
 DAP_ERROR_NOT_IMPLEMENTED is always adequate. It is
 nonetheless recommended that each provider implement the
 sole predefined request, which simply identifies the provider
 and its current version.

Arguments

 request_token is an opaque bit pattern which identifies
 the specific extended function being requested.

 argument_ptr points to the structure containing the
 parameters being supplied to this procedure.

 argument_size indicates the size in bytes of the structure
 pointed to by argument_ptr.

Example

 DAP_ERROR rval;
 DAP_EXT_VERSION dafs_version;

 rval = dap_extensions(DAP_EXT_GETVERSION,
 (DAP_PVOID) &dafs_version,
 sizeof(dafs_version));
 if (rval == DAP_SUCCESS)
 printf("Current DAFS Provider: %s Version %2u.%02u\n",
 dafs_version.dap_provider,
 dafs_version.dap_major,
 dafs_version.dap_minor);

Returns

man_pages.txt Sat Nov 17 16:19:09 2001 63

 Returns zero on success. Otherwise, any of the DAFS errors
 may be returned, including those mentioned below.

Errors

 DAP_ERROR_NOT_IMPLEMENTED
 The requested function is not implemented.

 DAP_ERROR_INVALID_ADDRESS
 The address of the arguments, or an address with
 them, was not valid.

 DAP_ERROR_NO_RESOURCES
 There were insufficient resources to perform the
 requested action.

 DAP_ERROR_INVALID_FILE_HANDLE
 DAP_ERROR_INVALID_DIR_HANDLE
 DAP_ERROR_INVALID_CG_HANDLE
 DAP_ERROR_INVALID_MEM_HANDLE
 A handle supplied in the arguments was not valid.

 DAP_ERROR_PERM
 The caller does not have permission to perform
 the requested action.

 DAP_ERROR_TRANSPORT_FAILURE
 A catastrophic and unrecoverable transport failure
 has occurred.

 Other DAP_ERROR values may also be returned.

man_pages.txt Sat Nov 17 16:19:09 2001 64

dap_fchmod

 Change the mode of a file or directory.

DAP_ERROR
dap_fchmod(
 DAP_HANDLE some_handle,
 DAP_CREATE_MODE mode);

Description

 This routine sets the permission bits of a file or directory,
 given a valid handle.

Arguments

 some_handle is a valid handle to a file or directory,
 obtained from, for example, dap_open_dir(), or dap_open_file().

 mode specifies the permission bits to be set; these are
 POSIX-style permission bits.

Returns

 Returns zero on success. Otherwise returns one of the error values
 listed below.

Errors

 DAP_ERROR_INVALID_DIR_HANDLE
 The directory handle some_handle was invalid.

 DAP_ERROR_INVALID_FILE_HANDLE
 The file handle some_handle was invalid.

 DAP_ERROR_PERM
 The credentials established were not sufficient to
 allow the requested operation.

 DAP_ERROR_TRANSPORT_FAILURE
 A catastrophic and unrecoverable transport failure
 has occurred.

 Other DAP_ERROR values may also be returned.

man_pages.txt Sat Nov 17 16:19:09 2001 65

dap_fchown

 Change the owner and group attributes of a file or directory,
 given an open handle to it.

DAP_ERROR
dap_fchown(
 DAP_HANDLE some_handle,
 const DAP_CHAR *owner,
 const DAP_CHAR *group);

Description

 This routine sets the owner and group attributes of a
 file or directory, given a valid handle.

Arguments

 some_handle is a valid handle to a file or directory,
 obtained from, for example, dap_open_dir() or dap_open_file().

 owner and group point to representations of the desired
 owner and group attributes of the file or directory indicated
 by some_handle. Either may be NULL, causing that parameter
 to be ignored.

Returns

 Returns zero on success. Otherwise returns one of the error values
 listed below.

Errors

 DAP_ERROR_INVALID_DIR_HANDLE
 The directory handle some_handle was invalid.

 DAP_ERROR_INVALID_FILE_HANDLE
 The file handle some_handle was invalid.

 DAP_ERROR_PERM
 The credentials established were not sufficient to
 allow the requested operation.

 DAP_ERROR_TRANSPORT_FAILURE
 A catastrophic and unrecoverable transport failure
 has occurred.

 Other DAP_ERROR values may also be returned.

man_pages.txt Sat Nov 17 16:19:09 2001 66

dap_filesys_query

 Query the attributes of a DAFS file system.

DAP_ERROR
dap_filesys_query(
 DAP_DIRECTORY_HANDLE dir_handle,
 DAP_CRED_HANDLE cred_handle,
 const DAP_CHAR *path,
 DAP_BITMAP attrs_requested,
 DAP_COUNT max_byte_count,
 DAP_FILESYS_DESC *filesys_info);

Description

 This routine fetches the attributes of the file system
 indicated by path and dir_handle. The attributes desired
 are specified by setting bits of the attrs_requested
 parameter, and the dap_valid_attrs field of the DAP_FILESYS_DESC
 indicates which attributes were actually returned (which
 may be fewer than requested).

 The directory handle and path together indicate the target
 file system to be queried. If an absolute path is given,
 then the directory handle may be NULL; the DAFS name service
 will be used to locate the file system. If the path is
 relative, it is interpreted in relation to the directory
 handle. The DAFS API has no concept of "current working
 directory" since that is not thread-safe.

Arguments

 dir_handle is a valid directory handle to a directory
 residing somewhere within the target file system,
 as returned by dap_open_dir().

 cred_handle is an optional credential handle obtained with
 the dap_create_credential() routine. If NULL is supplied,
 the provider will use default credentials if such exist.

 path is interpreted relative to dir_handle, and is a path
 to any valid file system object within the target file system.

 attrs_requested indicates which attributes are desired;
 bits set to one indicate attributes that are requested.

 max_byte_count is the number of bytes (octets) pointed
 to by filesys_info. The caller is responsible for managing
 this storage. This size is included to allow for future
 growth of the DAP_FILESYS_DESC, possibly including
 variably-sized fields.

 filesys_info is a pointer to a DAP_FILESYS_DESC structure,
 to be filled in with the requested information.

Returns

 Returns zero on success. Otherwise returns one of the error values
 listed below.

Errors

 DAP_ERROR_INVALID_DIR_HANDLE

man_pages.txt Sat Nov 17 16:19:09 2001 67

 The dir_handle supplied is not valid.

 DAP_ERROR_INVALID_CRED_HANDLE
 The cred_handle supplied is not valid.

 DAP_ERROR_ACCESS
 The supplied credential does not allow access
 to the path requested.

 DAP_ERROR_LOOP
 Too many symbolic links were encountered in
 translating the path.

 DAP_ERROR_UNKNOWN_LOCATION
 The location for the target file cannot be
 found in the DAFS name service.

 DAP_ERROR_UNKNOWN_SERVER
 The server containing the target file was located
 by the DAFS name service, but cannot be resolved to
 a transport address.

 DAP_ERROR_UNREACHABLE
 The server containing the target file cannot be
 reached. This could be temporary (a broken cable)
 or permanent (a configuration error).

 DAP_ERROR_UNKNOWN_PATH
 The path provided does not resolve to a DAFS server.

 DAP_ERROR_PATH
 One of the components in the path does not exist.

 DAP_ERROR_NAMETOOLONG
 The path name exceeds the maximum length supported.

 DAP_ERROR_NOT_DIRECTORY
 A pathname component is not a directory.

 DAP_ERROR_TRANSPORT_FAILURE
 A catastrophic and unrecoverable transport failure
 has occurred.

 Other DAP_ERROR values may also be returned.

man_pages.txt Sat Nov 17 16:19:09 2001 68

dap_flink

 Establish a link to a file, given a handle to an open file.

DAP_ERROR
dap_flink(
 DAP_DIRECTORY_HANDLE dir_handle,
 DAP_CRED_HANDLE cred_handle,
 DAP_FILE_HANDLE old_file,
 const DAP_CHAR *new_path);

Description

 The dap_flink() routine establishes a new directory entry
 (new_path) which points to the existing file system object
 indicated by old_file, an open handle. This is the only
 way to make visible a file created in ’unlinked’ state (see
 dap_open_file()). The new_path must not exist, and old_file
 must be a valid handle to an open file, and both must lie
 within the same file system, as defined by the underlying
 server.

 The old_file handle indicates the existing file which is
 the target of this operation. The directory handle and
 path together indicate the target’s new name. If an absolute
 path is given, then the directory handle may be NULL; the
 DAFS name service will be used to locate the target object.
 If the path is relative, it is interpreted in relation to
 the directory handle. The DAFS API has no concept of
 "current working directory" since that is not thread-safe.

Arguments

 dir_handle is a DAFS directory handle returned by the
 dap_open_dir() call, or NULL.

 cred_handle is an optional credential handle obtained with
 the dap_create_credential() routine. If NULL is supplied,
 the provider will use default credentials if such exist.

 old_file, as returned by dap_open_file(), indicates the
 target of the link operation. It may not reside on a
 different file system (as defined by the server) from
 new_path.

 new_path indicates the new path which will refer to the
 target of this operation. It is also interpreted relative
 to dir_handle.

Returns

 Returns zero on success. Otherwise returns one of the error values
 listed below.

See Also
 See dap_open_file() and dap_open_file2() for details on
 opening a file in ’unlinked’ state. An open file which is
 never linked to a pathname becomes irretrievably lost should
 the application close the handle, whether through deliberate
 action or error.

Errors

man_pages.txt Sat Nov 17 16:19:09 2001 69

 DAP_ERROR_INVALID_DIR_HANDLE
 dir_handle isn’t a valid directory handle.

 DAP_ERROR_INVALID_FILE_HANDLE
 old_file is not a valid file handle.

 DAP_ERROR_INVALID_CRED_HANDLE
 The credential handle was invalid.

 DAP_ERROR_PERM
 The credential supplied was not sufficient to
 allow the requested operation.

 DAP_ERROR_ACCESS
 The supplied credential does not allow access
 to one fo the paths requested.

 DAP_ERROR_INVALID_NATTR
 The dir_handle indicates a named attribute directory.

 DAP_ERROR_LOOP
 Too many symbolic links were encountered in
 translating the path.

 DAP_ERROR_MLINK
 There are too may hard links to the target.

 DAP_ERROR_UNKNOWN_LOCATION
 The location for the target file cannot be
 found in the DAFS name service.

 DAP_ERROR_UNKNOWN_SERVER
 The server containing the target file was located
 by the DAFS name service, but cannot be resolved to
 a transport address.

 DAP_ERROR_UNREACHABLE
 The server containing the target file cannot be
 reached. This could be temporary (a broken cable)
 or permanent (a configuration error).

 DAP_ERROR_UNKNOWN_PATH
 The path provided does not resolve to a DAFS server.

 DAP_ERROR_PATH
 One of the components in the path does not exist.

 DAP_ERROR_NAMETOOLONG
 The path name exceeds the maximum length supported.

 DAP_ERROR_NOT_DIRECTORY
 A pathname component is not a directory.

 DAP_ERROR_TRANSPORT_FAILURE
 A catastrophic and unrecoverable transport failure
 has occurred.

 Other DAP_ERROR values may also be returned.

man_pages.txt Sat Nov 17 16:19:09 2001 70

dap_fsync

 Ensure that file data has reached stable storage.

DAP_ERROR
dap_fsync(
 DAP_FILE_HANDLE file_handle,
 DAP_OFFSET file_offset,
 DAP_COUNT byte_count);

Description

 This routine ensures that a range of previously written
 data to the handle "file_handle" is forced into non-volatile
 storage on the server(s), including the metadata describing
 the committed operation, if any. It is undefined whether
 in-flight asynchronous writes are affected by this call.

 This is particularly useful in conjunction with files opened
 with the DAP_ASYNC flag, which allows the server latitude
 in scheduling disk operations by allowing the server to buffer
 write data and other modifications. See dap_open_file() for
 details.

Arguments

 file_handle is a DAFS file object handle as returned by the
 dap_open_file() or dap_open_nattr() calls.

 file_offset and byte_count indicate the range of I/O,
 previously completed, that must be committed to stable
 storage. If both are zero, the entire file indicated by
 file_handle is committed. It is not an error for byte_count
 to exceed the current size of the file.

Returns

 Returns zero on success. Otherwise returns one of the error values
 listed below.

Errors

 DAP_ERROR_INVALID_FILE_HANDLE
 The file handle file_handle was invalid.

 DAP_ERROR_TRANSPORT_FAILURE
 A catastrophic and unrecoverable transport failure
 has occurred.

 Other DAP_ERROR values may also be returned.

man_pages.txt Sat Nov 17 16:19:09 2001 71

dap_get_acl

 Fetch the access control list of a file system object.

DAP_ERROR
dap_get_acl(
 DAP_DIRECTORY_HANDLE dir_handle,
 DAP_CRED_HANDLE cred_handle,
 const DAP_CHAR *path,
 DAP_FLAGS flags,
 DAP_COUNT max_byte_count,
 DAP_ACL_INFO *aces_ptr,
 DAP_COUNT *num_aces);

Description

 This routine fetches the access control list associated
 with a file system object.

 Since the returned attributes may contain a variable amount
 of data, the application is responsible for allocating
 sufficient storage, indicating the amount supplied in the
 max_byte_count parameter. The returned data consists of
 an array of fixed-size structures (of type DAP_ACL_INFO)
 along with the NUL-terminated strings pointed to by fields
 in the DAP_ACL_INFO structures.

 The directory handle and path together indicate the target
 of this call. If an absolute path is given, then the
 directory handle may be NULL; the DAFS name service will
 be used to locate the target object. If the path is
 relative, it is interpreted in relation to the directory
 handle. The DAFS API has no concept of "current working
 directory" since that is not thread-safe.

Arguments

 dir_handle is a DAFS directory handle returned from the
 dap_open_dir() call.

 cred_handle is an optional credential handle obtained with
 the dap_create_credential() routine. If NULL is supplied,
 the provider will use default credentials if such exist.

 path is interpreted relative to dir_handle, and must lead
 to a valid file system object.

 flags consists of bit flags used to modify the behavior of
 this routine. Undefined bits must be zero.
 The following flag bits are defined:

 DAP_NO_FOLLOW
 If the final component of path is a symbolic link,
 this flag indicates that the link itself is the
 target of this operation, rather than whatever
 it might point to. If the final component of path
 is not a symbolic link, this flag is ignored.

 max_byte_count is the number of bytes (octets) pointed
 to by aces_ptr. The caller is responsible for managing
 this storage, and is responsible for providing sufficient
 storage to hold the results.

man_pages.txt Sat Nov 17 16:19:09 2001 72

 aces_ptr points to a block of the caller’s memory to be
 filled in with the array of DAP_ACL_INFO structures
 associated with the file system object indicated by path.

 num_aces points to a variable that, on successful return,
 will indicate the number of valid DAP_ACL_INFO structures
 fetched. Zero indicates that there are no access control
 entries associated with the indicated file system object.

Returns

 Returns zero on success. Otherwise returns one of the error values
 listed below.

Errors

 DAP_ERROR_INVALID_DIR_HANDLE
 The base_dir_handle given was invalid.

 DAP_ERROR_INVALID_CRED_HANDLE
 The credential handle was invalid.

 DAP_ERROR_BUFFER_TOO_SMALL
 The number of bytes given was not sufficient to hold
 the DAP_STAT_DESC and variable-length fields.
 The application should try again using a larger buffer.

 DAP_ERROR_PERM
 The credential supplied was not sufficient to
 allow the requested operation.

 DAP_ERROR_ACCESS
 The supplied credential does not allow access
 to the path requested.

 DAP_ERROR_LOOP
 Too many symbolic links were encountered in
 translating the path.

 DAP_ERROR_UNKNOWN_LOCATION
 The location for the target file cannot be
 found in the DAFS name service.

 DAP_ERROR_UNKNOWN_SERVER
 The server containing the target file was located
 by the DAFS name service, but cannot be resolved to
 a transport address.

 DAP_ERROR_UNREACHABLE
 The server containing the target file cannot be
 reached. This could be temporary (a broken cable)
 or permanent (a configuration error).

 DAP_ERROR_UNKNOWN_PATH
 The path provided does not resolve to a DAFS server.

 DAP_ERROR_PATH
 One of the components in the path does not exist.

 DAP_ERROR_NAMETOOLONG
 The path name exceeds the maximum length supported.

 DAP_ERROR_NOT_DIRECTORY
 A pathname component is not a directory.

man_pages.txt Sat Nov 17 16:19:09 2001 73

 DAP_ERROR_TRANSPORT_FAILURE
 A catastrophic and unrecoverable transport failure
 has occurred.

 Other DAP_ERROR values may also be returned.

man_pages.txt Sat Nov 17 16:19:09 2001 74

dap_get_attr

 Fetches the attributes of a file system object.

DAP_ERROR
dap_get_attr(
 DAP_DIRECTORY_HANDLE dir_handle,
 DAP_CRED_HANDLE cred_handle,
 const DAP_CHAR *path,
 DAP_FLAGS flags,
 DAP_BITMAP attrs_requested,
 DAP_COUNT max_byte_count,
 DAP_STAT_DESC *descr_ptr);

Description

 This routine fetches the attributes of a file system object.
 The attributes desired are specified by setting bits of
 the attrs_requested parameter, and the dap_valid_attrs field
 of the DAP_STAT_DESC indicates which attributes were actually
 returned (which may be fewer than requested).

 Since the returned attributes may contain a variable amount
 of data, the application is responsible for allocating
 sufficient storage, indicating the amount supplied in the
 max_byte_count parameter. The returned data consists of
 a fixed-size structure (the DAP_STAT_DESC) and the
 NUL-terminated strings whose contents are pointed to by
 fields in the DAP_STAT_DESC.

 The directory handle and path together indicate the target
 of this call. If an absolute path is given, then the
 directory handle may be NULL; the DAFS name service will
 be used to locate the target object. If the path is
 relative, it is interpreted in relation to the directory
 handle. The DAFS API has no concept of "current working
 directory" since that is not thread-safe.

Arguments

 dir_handle is a DAFS directory handle returned from the
 dap_open_dir() call.

 cred_handle is an optional credential handle obtained with
 the dap_create_credential() routine. If NULL is supplied,
 the provider will use default credentials if such exist.

 path is interpreted relative to dir_handle, and must lead
 to a valid file system object.

 flags consists of bit flags used to modify the behavior of
 this routine. Undefined bits must be zero.
 The following flag bits are defined:

 DAP_NO_FOLLOW
 If the final component of path is a symbolic link,
 this flag indicates that the link itself is the
 target of this operation, rather than whatever
 it might point to. If the final component of path
 is not a symbolic link, this flag is ignored.

 attrs_requested indicates which attributes are desired;
 bits set to one indicate attributes that are requested.

man_pages.txt Sat Nov 17 16:19:09 2001 75

 max_byte_count is the number of bytes (octets) pointed
 to by descr_ptr. The caller is responsible for managing
 this storage.

 descr_ptr points to a DAP_STAT_DESC structure to be filled
 in with the attribute information for the path given. The
 attributes that were actually fetched are indicated by bits
 in descr_ptr->dap_valid_attrs being set. Note well that a
 successful invocation may return a subset of those requested,
 if some are not supported.

Returns

 Returns zero on success. Otherwise returns one of the error values
 listed below.

Errors

 DAP_ERROR_INVALID_DIR_HANDLE
 The base_dir_handle given was invalid.

 DAP_ERROR_INVALID_CRED_HANDLE
 The credential handle was invalid.

 DAP_ERROR_BUFFER_TOO_SMALL
 The number of bytes given was not sufficient to hold
 the DAP_STAT_DESC and variable-length fields.
 The application should try again using a larger buffer.

 DAP_ERROR_PERM
 The credential supplied was not sufficient to
 allow the requested operation.

 DAP_ERROR_ACCESS
 The supplied credential does not allow access
 to the path requested.

 DAP_ERROR_LOOP
 Too many symbolic links were encountered in
 translating the path.

 DAP_ERROR_UNKNOWN_LOCATION
 The location for the target file cannot be
 found in the DAFS name service.

 DAP_ERROR_UNKNOWN_SERVER
 The server containing the target file was located
 by the DAFS name service, but cannot be resolved to
 a transport address.

 DAP_ERROR_UNREACHABLE
 The server containing the target file cannot be
 reached. This could be temporary (a broken cable)
 or permanent (a configuration error).

 DAP_ERROR_UNKNOWN_PATH
 The path provided does not resolve to a DAFS server.

 DAP_ERROR_PATH
 One of the components in the path does not exist.

 DAP_ERROR_NAMETOOLONG
 The path name exceeds the maximum length supported.

man_pages.txt Sat Nov 17 16:19:09 2001 76

 DAP_ERROR_NOT_DIRECTORY
 A pathname component is not a directory.

 DAP_ERROR_INVALID_ATTR
 An invalid or unsupported attribute was specified.

 DAP_ERROR_TRANSPORT_FAILURE
 A catastrophic and unrecoverable transport failure
 has occurred.

 Other DAP_ERROR values may also be returned.

man_pages.txt Sat Nov 17 16:19:09 2001 77

dap_get_fattr

 Fetches the attributes of a file system object,
 given an open handle to it.

DAP_ERROR
dap_get_fattr(
 DAP_HANDLE some_handle,
 DAP_BITMAP attrs_requested,
 DAP_COUNT max_byte_count,
 DAP_STAT_DESC *descr_ptr);

Description

 This routine fetches the attributes of a file system object,
 given a valid handle to that object. The attributes desired
 are specified by setting bits of the attrs_requested
 parameter, and the dap_valid_attrs field of the DAP_STAT_DESC
 indicates which attributes were actually returned (which
 may be fewer than requested).

 Since the returned attributes may contain a variable amount
 of data, the application is responsible for allocating
 sufficient storage, indicating the amount supplied in the
 max_byte_count parameter. The returned data consists of
 a fixed-size structure (the DAP_STAT_DESC) and the
 NUL-terminated strings whose contents are pointed to by
 fields in the DAP_STAT_DESC.

 The directory handle and path together indicate the target
 of this call. If an absolute path is given, then the
 directory handle may be NULL; the DAFS name service will
 be used to locate the target object. If the path is
 relative, it is interpreted in relation to the directory
 handle. The DAFS API has no concept of "current working
 directory" since that is not thread-safe.

Arguments

 some_handle is a valid handle to a file or directory,
 obtained from, for example, dap_open_dir() or dap_open_file().

 attrs_requested indicates which attributes are desired;
 bits set to one indicate attributes that are requested.

 max_byte_count is the number of bytes (octets) pointed
 to by descr_ptr. The caller is responsible for managing
 this storage.

 descr_ptr points to a DAP_STAT_DESC structure to be filled
 in with the attribute information for the path given. The
 attributes that were actually fetched are indicated by bits
 in descr_ptr->dap_valid_attrs being set. Note well that a
 successful invocation may return a subset of those requested,
 if some are not supported.

Returns

 Returns zero on success. Otherwise returns one of the error values
 listed below.

Errors

man_pages.txt Sat Nov 17 16:19:09 2001 78

 DAP_ERROR_INVALID_DIR_HANDLE
 The base_dir_handle given was invalid.

 DAP_ERROR_INVALID_FILE_HANDLE
 The base_dir_handle given was invalid.

 DAP_ERROR_BUFFER_TOO_SMALL
 The number of bytes given was not sufficient to hold
 even a single DAP_DIRENTRY with attributes and its name.
 The application should try again using a larger buffer.

 DAP_ERROR_PERM
 The credential supplied was not sufficient to
 allow the requested operation.

 DAP_ERROR_INVALID_ATTR
 An invalid or unsupported attribute was specified.

 DAP_ERROR_TRANSPORT_FAILURE
 A catastrophic and unrecoverable transport failure
 has occurred.

 Other DAP_ERROR values may also be returned.

man_pages.txt Sat Nov 17 16:19:09 2001 79

dap_get_fencelist

 Fetch the fencing list of a file or file system.

DAP_ERROR
dap_get_fencelist(
 DAP_DIRECTORY_HANDLE dir_handle,
 DAP_CRED_HANDLE cred_handle,
 const DAP_CHAR *path,
 DAP_FLAGS flags,
 DAP_COUNT max_byte_count,
 DAP_CHAR *fence_ids_ptr[],
 DAP_COUNT *num_fence_ids);

Description

 This routine fetches the fencing list associated with
 a file system or a file system object.

 Cooperating clients begin by registering the single fencing
 ID (an arbitrary string) which identifies them. Fencing
 lists are attached to file systems and file system objects,
 and indicate those clients that are to be allowed access.
 Manipulating those fencing lists then provides cooperating
 clients the ability to revoke a particular client’s access.

 Since the returned attributes may contain a variable amount
 of data, the application is responsible for allocating
 sufficient storage, indicating the amount supplied in the
 max_byte_count parameter. The returned data consists of
 an array of fixed-size pointers (of type DAP_CHAR *) and
 the NUL-terminated strings pointed to by the array of
 pointers.

 The directory handle and path together indicate the target
 of this call. If an absolute path is given, then the
 directory handle may be NULL; the DAFS name service will
 be used to locate the target object. If the path is
 relative, it is interpreted in relation to the directory
 handle. The DAFS API has no concept of "current working
 directory" since that is not thread-safe.

Arguments

 dir_handle is a DAFS directory handle returned from the
 dap_open_dir() call.

 cred_handle is an optional credential handle obtained with
 the dap_create_credential() routine. If NULL is supplied,
 the provider will use default credentials if such exist.

 path is interpreted relative to dir_handle, and must lead
 to a valid file system object.

 flags consists of bit flags used to modify the behavior of
 this routine. Undefined bits must be zero.
 The following flag bits are defined:

 DAP_FILESYSTEM
 If this bit is set, the fencelist for the file
 system underlying path is to be fetched.

 DAP_NO_FOLLOW

man_pages.txt Sat Nov 17 16:19:09 2001 80

 If the final component of path is a symbolic link,
 this flag indicates that the link itself is the
 target of this operation, rather than whatever
 it might point to. If the final component of path
 is not a symbolic link, this flag is ignored.

 max_byte_count is the number of bytes (octets) pointed
 to by fence_ids_ptr. The caller is responsible for managing
 this storage, and is responsible for providing sufficient
 storage to hold the results.

 fence_ids_ptr points to a block of the caller’s memory to
 be filled in with the array of pointers to fence IDs (which
 are arbitrary NUL-terminated strings) associated with the
 file system or file system object indicated by path.

 num_fence_ids points to a variable that, on successful
 return, will indicate the number of valid fence IDs fetched.
 Zero indicates that there are no access control entries
 associated with the indicated file system object.

Returns

 Returns zero on success. Otherwise returns one of the error values
 listed below.

See Also

 dap_set_fenceID(), dap_set_fencelist()

Errors

 DAP_ERROR_INVALID_DIR_HANDLE
 The base_dir_handle given was invalid.

 DAP_ERROR_INVALID_CRED_HANDLE
 The credential handle was invalid.

 DAP_ERROR_BUFFER_TOO_SMALL
 The number of bytes given was not sufficient to hold
 the DAP_STAT_DESC and variable-length fields.
 The application should try again using a larger buffer.

 DAP_ERROR_PERM
 The credential supplied was not sufficient to
 allow the requested operation.

 DAP_ERROR_ACCESS
 The supplied credential does not allow access
 to the path requested.

 DAP_ERROR_LOOP
 Too many symbolic links were encountered in
 translating the path.

 DAP_ERROR_UNKNOWN_LOCATION
 The location for the target file cannot be
 found in the DAFS name service.

 DAP_ERROR_UNKNOWN_SERVER
 The server containing the target file was located
 by the DAFS name service, but cannot be resolved to
 a transport address.

 DAP_ERROR_UNREACHABLE

man_pages.txt Sat Nov 17 16:19:09 2001 81

 The server containing the target file cannot be
 reached. This could be temporary (a broken cable)
 or permanent (a configuration error).

 DAP_ERROR_UNKNOWN_PATH
 The path provided does not resolve to a DAFS server.

 DAP_ERROR_PATH
 One of the components in the path does not exist.

 DAP_ERROR_NAMETOOLONG
 The path name exceeds the maximum length supported.

 DAP_ERROR_NOT_DIRECTORY
 A pathname component is not a directory.

 DAP_ERROR_NOT_SUPPORTED
 Fencing is not supported.

 DAP_ERROR_TRANSPORT_FAILURE
 A catastrophic and unrecoverable transport failure
 has occurred.

 Other DAP_ERROR values may also be returned.

man_pages.txt Sat Nov 17 16:19:09 2001 82

dap_io_done

 Checks the status of an async I/O operation.

DAP_ERROR
dap_io_done(
 DAP_IO_RESULT *io_desc);

Description

 Checks the status of an asynchronous I/O operation and
 returns immediately without waiting. Functionally equivalent
 to a call to dap_io_wait() with an instantaneous timeout
 (DAP_WAIT_NOWAIT). If the I/O has completed, this routine
 returns zero and the structure pointed to by io_desc has
 been filled in with the results for the completed operation.

 This routine may be used to reap completions only from those
 I/O operations that were initiated using a completion group
 handle of NULL.

Arguments

 io_desc is the pointer to the DAP_IO_RESULT for the
 asynchronous I/O operation being checked for completion.
 These are the structure(s) that were supplied to the call
 originating the asynchronous operations (dap_async_read(),
 dap_async_write(), dap_async_listio(), etc.).

Returns

 Returns zero on success. Otherwise returns one of the error values
 listed below. An error from the asynchronous operation may be
 contained in the dap_error field of the DAP_IO_RESULT.

Errors

 DAP_ERROR_PENDING_IO
 The asynchronous I/O operation is still in progress.
 Try again later.

 DAP_ERROR_NO_IO_PENDING
 There have been no I/O operations initiated
 using this DAP_IO_RESULT.

 DAP_ERROR_CG_INVALID
 It is invalid to attempt to wait on a DAP_IO_RESULT
 that has had completions directed to a completion group.

 DAP_ERROR_IO_CANCELLATION
 The operation associated with this DAP_IO_RESULT
 was successfully cancelled. This error will only
 appear in io_desc->dap_error.

 DAP_ERROR_TRANSPORT_FAILURE
 A catastrophic and unrecoverable transport failure
 has occurred.

 Other DAP_ERROR values may also be returned.

man_pages.txt Sat Nov 17 16:19:09 2001 83

dap_io_wait

 Block for an asynchronous I/O operation.

DAP_ERROR
dap_io_wait(
 DAP_TIMEOUT timeout,
 DAP_IO_RESULT *io_desc);

Description

 Blocks for up to a duration of "timeout" awaiting the I/O
 completion indicated by io_desc. If timeout is set to
 DAP_WAIT_NOWAIT, it checks but does not block. If timeout
 is set to DAP_WAIT_FOREVER, it will block until an I/O
 completes before returning. If the I/O has completed, this
 routine returns zero and the structure pointed to by io_desc
 has been filled in with the results for the completed
 operation.

 This routine may be used to reap completions only from those
 I/O operations that were initiated using a completion group
 handle of NULL.

Arguments

 timeout indicates how long to wait for an I/O completion
 before returning DAP_ERROR_PENDING_IO. If timeout is
 equal to DAP_WAIT_NOWAIT this call is equivalent to
 dap_io_done(). If timeout is equal to DAP_WAIT_FOREVER
 it will block until an I/O completes.

 io_desc is the pointer to the DAP_IO_RESULT for the
 asynchronous I/O operation being checked for completion.
 These are the structure(s) that were supplied to the call
 originating the asynchronous operations (dap_async_read(),
 dap_async_write(), dap_async_listio(), etc.).

Returns

 Returns zero on success. Otherwise returns one of the error values
 listed below. An error from the asynchronous operation may be
 contained in the dap_error field of the DAP_IO_RESULT.

Errors

 DAP_ERROR_PENDING_IO
 The timeout expired before I/O completion.

 DAP_ERROR_NO_IO_PENDING
 There have been no I/O operations initiated
 using this DAP_IO_RESULT.

 DAP_ERROR_CG_INVALID
 It is invalid to attempt to wait on a DAP_IO_RESULT
 that has had completions directed to a completion group.

 DAP_ERROR_IO_CANCELLATION
 The operation associated with this DAP_IO_RESULT
 was successfully cancelled. This error will only
 appear in io_desc->dap_error.

 DAP_ERROR_TRANSPORT_FAILURE

man_pages.txt Sat Nov 17 16:19:09 2001 84

 A catastrophic and unrecoverable transport failure
 has occurred.

 Other DAP_ERROR values may also be returned.

man_pages.txt Sat Nov 17 16:19:09 2001 85

dap_link

 Establish a link to a file

DAP_ERROR
dap_link(
 DAP_DIRECTORY_HANDLE dir_handle,
 DAP_CRED_HANDLE cred_handle,
 const DAP_CHAR *old_path,
 const DAP_CHAR *new_path);

Description

 The dap_link() routine establishes a new directory entry
 (new_path) which points to the existing file system object
 indicated by old_path. The new_path must not exist, and
 old_path must exist, and both must lie within the same file
 system, as defined by the underlying server.

 The directory handle and paths together indicate the targets
 of the dap_link() call. If absolute paths are given, then
 the directory handle may be NULL; the DAFS name service
 will be used to locate the target objects. If the paths
 are relative, they are interpreted in relation to the
 directory handle. The DAFS API has no concept of "current
 working directory" since that is not thread-safe.

Arguments

 dir_handle is a DAFS directory handle returned by the
 dap_open_dir() call.

 cred_handle is an optional credential handle obtained with
 the dap_create_credential() routine. If NULL is supplied,
 the provider will use default credentials if such exist.

 old_path indicates the target of the link operation. It is
 interpreted relative to dir_handle, and must lead to a valid
 file system object. It may not be a directory, and may not
 reside on a different file system (as defined by the server)
 from new_path.

 new_path indicates the new path which will refer to the
 target of this operation. It is also interpreted relative
 to dir_handle.

Returns

 Returns zero on success. Otherwise returns one of the error values
 listed below.

Errors

 DAP_ERROR_INVALID_DIR_HANDLE
 dir_handle isn’t a valid directory handle.

 DAP_ERROR_INVALID_CRED_HANDLE
 The credential handle was invalid.

 DAP_ERROR_PERM
 The credential supplied was not sufficient to
 allow the requested operation.

man_pages.txt Sat Nov 17 16:19:09 2001 86

 DAP_ERROR_ACCESS
 The supplied credential does not allow access
 to one of the paths requested.

 DAP_ERROR_INVALID_NATTR
 The dir_handle indicates a named attribute directory.

 DAP_ERROR_LOOP
 Too many symbolic links were encountered in
 translating the path.

 DAP_ERROR_MLINK
 There are too may hard links to the target.

 DAP_ERROR_UNKNOWN_LOCATION
 The location for the target file cannot be
 found in the DAFS name service.

 DAP_ERROR_UNKNOWN_SERVER
 The server containing the target file was located
 by the DAFS name service, but cannot be resolved to
 a transport address.

 DAP_ERROR_UNREACHABLE
 The server containing the target file cannot be
 reached. This could be temporary (a broken cable)
 or permanent (a configuration error).

 DAP_ERROR_UNKNOWN_PATH
 The path provided does not resolve to a DAFS server.

 DAP_ERROR_PATH
 One of the components in the path does not exist.

 DAP_ERROR_NAMETOOLONG
 The path name exceeds the maximum length supported.

 DAP_ERROR_NOT_DIRECTORY
 A pathname component is not a directory.

 DAP_ERROR_TRANSPORT_FAILURE
 A catastrophic and unrecoverable transport failure
 has occurred.

 Other DAP_ERROR values may also be returned.

man_pages.txt Sat Nov 17 16:19:09 2001 87

dap_lock_range

 Attempt an advisory read/write lock on a range of bytes.

DAP_ERROR
dap_lock_range(
 DAP_FILE_HANDLE file_handle,
 DAP_OFFSET byte_offset,
 DAP_LENGTH byte_length,
 DAP_LOCK_TYPE lock_type,
 unsigned int lock_options,
 DAP_TIMEOUT how_long);

Description

 This routine attempts to take a record lock for the range
 of bytes requested, against the file indicated by file_handle.
 The locking model is one of advisory read/write locks.
 In other words, there may be multiple readers, but only
 one writer, and not both at the same time. That the
 locks are advisory means that a successful locking attempt
 inhibits further locking attempts, but does not prevent
 I/O operations from taking place.

 Bytes in a file may be locked even if those bytes are not
 currently allocated to the file. To lock the file from a
 specific offset through the end-of-file (no matter how long
 the file actually is) use a byte_length field will all bits
 set to 1 (one). To lock the entire file, use a byte_offset
 of 0 (zero) and a byte_length with all bits set to 1. A
 byte_length of zero should not be used.

 Locks may be upgraded (from read-lock to write-lock) and
 downgraded (from write-lock to read-lock) by performing an
 additional dap_lock_range() operation of the appropriate type
 on the same byte range. Locking is done on a per-DAP_FILE_HANDLE
 basis. This implies that multiple locking operations may be
 performed successfully by the current lock holder, but does
 not imply that multiple dap_unlock_range() operations are
 necessary. At most one lock per DAP_FILE_HANDLE is held on a
 given byte range, so that a single dap_unlock_range() undoes
 all previous dap_lock_range() operations for that range. Thus
 multiple clients threads operating on the same DAP_FILE_HANDLE
 cannot use this locking mechanism to provide mutual exclusion,
 though they may obtain distinct DAP_FILE_HANDLEs if necessary.

 It is implementation dependent whether a client may request a
 lock with one byte range and then either upgrade or unlock a
 sub-range of the initial lock. Likewise, it is implementation
 dependent whether a client may lock two adjacent byte ranges
 or two overlapping byte ranges and then upgrade or unlock the
 entire range or a subset spanning parts of both prior locking
 operations. The caller must be prepared for DAP_ERROR_LOCK_RANGE
 to be returned in these cases.

 For a more detailed explanation of auto-recover and persistent
 lock behavior, see the protocol specification.

Arguments

 file_handle is a DAFS file object as returned by
 the dap_open_file() call.

man_pages.txt Sat Nov 17 16:19:09 2001 88

 byte_offset indicates the offset of the first byte of the
 range to be locked. Zero indicates the initial byte.

 byte_length is the number of bytes to be locked, with
 a value of all one bits indicating "everything."

 lock_type indicates the type of locking desired. Possible
 values are:

 o DAP_LOCK_TRY_READ - try lock for reading once

 o DAP_LOCK_TRY_WRITE - try lock for writing once

 o DAP_LOCK_READ - blocking read lock attempt

 o DAP_LOCK_WRITE - blocking write lock attempt

 o DAP_LOCK_ABORT - roll-back auto-recover lock

 lock_options indicates the type of locking requested,
 and provides for handling of these extra features.
 Support for these is optional, and other lock_options
 bits should be zero.

 o DAP_LOCK_OPT_PERSIST - get a persistent lock

 o DAP_LOCK_OPT_AUTOREC - get an autorecover lock

 o DAP_LOCK_OPT_REPAIR - re-take broken persist lock

 how_long indicates how long the caller is willing to wait for
 the lock to become available. If the lock_type does not
 indicate a blocking lock attempt, this parameter is ignored.

Returns

 Returns zero on success. Otherwise returns one of the error
 values listed below.

Errors

 DAP_ERROR_INVALID_FILE_HANDLE
 file_handle isn’t a valid DAFS file handle.

 DAP_ERROR_LOCK_DENIED
 this lock attempt conflicts with a held lock

 DAP_ERROR_TIMED_OUT
 The lock request was not satisfied in the time
 period specified.

 DAP_ERROR_LOCK_BROKEN
 This locking attempt was made to a persist lock
 whose lease has expired.

 DAP_ERROR_LOCK_RANGE
 Locking of sub-ranges or overlapping ranges
 is not supported.

 DAP_ERROR_NOT_SUPPORTED
 An unsupported feature was requested.

 DAP_ERROR_BAD_ARG
 An argument was invalid (for example, byte_length
 of zero).

man_pages.txt Sat Nov 17 16:19:09 2001 89

 DAP_ERROR_TRANSPORT_FAILURE
 A catastrophic and unrecoverable transport failure
 has occurred.

 Other DAP_ERROR values may also be returned.

man_pages.txt Sat Nov 17 16:19:09 2001 90

dap_make_dev

 Create a special file

DAP_ERROR
dap_make_dev(
 DAP_DIRECTORY_HANDLE dir_handle,
 DAP_CRED_HANDLE cred_handle,
 const DAP_CHAR *path,
 DAP_FILETYPE type,
 DAP_CREATE_MODE mode,
 const DAP_SPECDATA *spec_data);

Description

 The dap_make_dev() routine creates a special file of the
 type and mode specified. Only block devices, character
 devices, FIFOs, and sockets may be created using this
 interface; regular files are created with dap_open_file(),
 directories with dap_open_dir(), symbolic links with
 dap_symlink(), and named attributes with dap_open_nattr().

 The directory handle and path together indicate the target
 of this call. If an absolute path is given, then the
 directory handle may be NULL; the DAFS name service will
 be used to locate the target object. If the path is
 relative, it is interpreted in relation to the directory
 handle. The DAFS API has no concept of "current working
 directory" since that is not thread-safe.

Arguments

 dir_handle is a DAFS directory handle returned by the
 dap_open_dir() call.

 cred_handle is an optional credential handle obtained with
 the dap_create_credential() routine. If NULL is supplied,
 the provider will use default credentials if such exist.

 path is an arbitrary path name. Each component except the
 last must be a directory, and the last component must not exist.

 type specifies the type of the special file to be created,
 and must be one of DAP_BLOCK_DEV, DAP_CHAR_DEV, DAP_SOCKET,
 or DAP_FIFO.

 mode specifies the mode of the special file to be created.

 spec_data points to the special data to be associated with
 the created special file. This parameter is ignored for
 sockets and FIFOs, and may be NULL. For character and
 block special files, spec_data encodes the major/minor
 numbers; it may be examined with dap_get_attr().

Returns

 Returns zero on success. Otherwise returns one of the error values
 listed below.

See Also
 dap_get_attr(), dap_get_fattr(), dap_open_file(),
 dap_open_dir(), dap_open_nattr(), dap_symlink(), dap_remove().

man_pages.txt Sat Nov 17 16:19:09 2001 91

Errors

 DAP_ERROR_INVALID_DIR_HANDLE
 dir_handle isn’t a valid directory handle.

 DAP_ERROR_INVALID_CRED_HANDLE
 The credential handle was invalid.

 DAP_ERROR_PERM
 The credential supplied was not sufficient to
 allow the requested operation.

 DAP_ERROR_BAD_ARG
 The type or spec_data or mode specified is invalid
 or not supported.

 DAP_ERROR_ACCESS
 The supplied credential does not allow access
 to the path requested.

 DAP_ERROR_FILE_EXISTS
 The target name already exists.

 DAP_ERROR_TRANSPORT_FAILURE
 A catastrophic and unrecoverable transport failure
 has occurred.

 DAP_ERROR_LOOP
 Too many symbolic links were encountered in
 translating the path.

 DAP_ERROR_UNKNOWN_LOCATION
 The location for the target file cannot be
 found in the DAFS name service.

 DAP_ERROR_UNKNOWN_SERVER
 The server containing the target file was located
 by the DAFS name service, but cannot be resolved to
 a transport address.

 DAP_ERROR_UNREACHABLE
 The server containing the target file cannot be
 reached. This could be temporary (a broken cable)
 or permanent (a configuration error).

 DAP_ERROR_UNKNOWN_PATH
 The path provided does not resolve to a DAFS server.

 DAP_ERROR_PATH
 One of the components in the path does not exist.

 DAP_ERROR_NAMETOOLONG
 The path name exceeds the maximum length supported.

 DAP_ERROR_NOT_DIRECTORY
 A pathname component is not a directory.

 Other DAP_ERROR values may also be returned.

man_pages.txt Sat Nov 17 16:19:09 2001 92

dap_open_dir

 Opens a directory, possibly creating it.

DAP_ERROR
dap_open_dir(
 DAP_DIRECTORY_HANDLE base_dir_handle,
 DAP_CRED_HANDLE cred_handle,
 const DAP_CHAR *path,
 DAP_FLAGS flags,
 DAP_CREATE_MODE dap_mode,
 DAP_DIRECTORY_HANDLE *dir_handle);

Description

 This routine will open the directory indicated by path.
 If DAP_CREATE is specified in the flags, the directory will
 be created if it does not already exist, otherwise an error
 will be returned.

 The directory handle and path together indicate the target
 directory to be opened. If an absolute path is given, then
 the directory handle may be NULL; the DAFS name service
 will be used to locate the server(s) containing the directory.
 If the path is relative, it is interpreted in relation to
 the directory handle. The DAFS API has no concept of
 "current working directory" since that is not thread-safe.

Arguments

 base_dir_handle is a DAFS directory handle returned from the
 dap_open_dir() call.

 cred_handle is an optional credential handle obtained with
 the dap_create_credential() routine. If NULL is supplied,
 the provider will use default credentials if such exist.

 path is interpreted relative to base_dir_handle, and must
 lead to a file system object that is either a valid directory
 or does not exist. All non-terminal components of the path
 must be directories.

 flags consists of bit flags used to modify the behavior of
 this routine. Undefined bits must be zero.
 The following flag bits are defined:

 DAP_CREATE
 If DAP_CREATE is specified, and "path" does not
 already exist, the directory will be created;
 otherwise an error will be returned.

 DAP_NATTR_DIR
 If this flag is used, the named attribute directory
 associated with path (which in this case may indicate
 any file or directory) is opened. The resulting
 directory handle may then used in conjunction with
 any of the directory reading routines to determine
 the list of named attributes associated with path.
 dap_open_nattr() may then be used to access
 the contents of the attribute.

 DAP_NONBLOCK
 If this flag is set, attempts to initiate asynchronous

man_pages.txt Sat Nov 17 16:19:09 2001 93

 I/O that would delay the calling thread return
 DAP_ERROR_WOULD_BLOCK; if this flag is not set, attempts
 to initiate asynchronous I/O may block as necessary
 due to issues of resource exhaustion or flow control.

 dap_mode is ignored unless the directory is being created,
 in which case it governs the mode of the new directory.
 Mode details are platform-dependent.

 dir_handle is a pointer to a DAP_DIRECTORY_HANDLE, which
 upon successful completion will contain a handle to
 the requested directory.

Returns

 Returns zero on success. Otherwise returns one of the error values
 listed below.

Errors

 DAP_ERROR_INVALID_DIR_HANDLE
 The base_dir_handle given was invalid.

 DAP_ERROR_INVALID_CRED_HANDLE
 The credential handle was invalid.

 DAP_ERROR_PERM
 The credential supplied was not sufficient to
 allow the requested operation.

 DAP_ERROR_INVALID_FLAGS
 The flags bits were invalid.

 DAP_ERROR_FILE_EXISTS
 The path refers to a existing file, not a directory.

 DAP_ERROR_NOT_DIRECTORY
 A pathname component is not a directory.

 DAP_ERROR_DIRECTORY
 Directory creation was requested, but the directory
 already exists.

 DAP_ERROR_ACCESS
 The supplied credential does not allow access
 to the path requested.

 DAP_ERROR_LOOP
 Too many symbolic links were encountered in
 translating the path.

 DAP_ERROR_UNKNOWN_LOCATION
 The location for the target file cannot be
 found in the DAFS name service.

 DAP_ERROR_UNKNOWN_SERVER
 The server containing the target file was located
 by the DAFS name service, but cannot be resolved to
 a transport address.

 DAP_ERROR_UNREACHABLE
 The server containing the target file cannot be
 reached. This could be temporary (a broken cable)
 or permanent (a configuration error).

man_pages.txt Sat Nov 17 16:19:09 2001 94

 DAP_ERROR_UNKNOWN_PATH
 The path provided does not resolve to a DAFS server.

 DAP_ERROR_PATH
 One of the components in the path does not exist.

 DAP_ERROR_NAMETOOLONG
 The path name exceeds the maximum length supported.

 DAP_ERROR_TRANSPORT_FAILURE
 A catastrophic and unrecoverable transport failure
 has occurred.

 Other DAP_ERROR values may also be returned.

man_pages.txt Sat Nov 17 16:19:09 2001 95

dap_open_file

 Opens a file, obtaining a handle to it.

DAP_ERROR
dap_open_file(
 DAP_DIRECTORY_HANDLE dir_handle,
 DAP_CRED_HANDLE cred_handle,
 const DAP_CHAR *path,
 DAP_FLAGS flags,
 DAP_CREATE_MODE mode,
 DAP_SHARE_KEY share_key ,
 DAP_FILE_HANDLE *file_handle);

Description

 This routine opens the file indicated by path, which is
 interpreted relative to dir_handle.

 The directory handle and path together indicate the target
 file object to be opened. If an absolute path is given,
 then the directory handle may be NULL; the DAFS name service
 will be used to locate the file. If the path is relative,
 it is interpreted in relation to the directory handle.
 The DAFS API has no concept of "current working directory"
 since that is not thread-safe.

 This function always opens the indicated file; in other
 words, if the path given is a symbolic link, "follow"
 behavior is implemented. The dap_close_file() routine is
 the inverse of this function.

Arguments

 dir_handle is a DAFS directory object returned by the
 dap_open_dir() call.

 cred_handle is an optional credential handle obtained with
 the dap_create_credential() routine. If NULL is supplied,
 the provider will use default credentials if such exist.

 path is interpreted relative to dir_handle, and must lead
 to a file system object that is either a valid file or does
 not exist. All non-terminal components of the path
 must be directories.

 flags specifies the type of access to the file. An
 application can obtain read access, write access, or
 read/write access qualified by other flags bitwise or-ed
 together. Any unsupported flag bits must be zero, and this
 parameter must include at least one of the following values:

 DAP_READ
 Open file for reading.

 DAP_WRITE
 Open file for writing.

 DAP_READ_WRITE
 Open file for both reading and writing (shorthand
 for ’DAP_READ | DAP_WRITE’).

 Qualifier flags which are bitwise or-ed to the above are:

man_pages.txt Sat Nov 17 16:19:09 2001 96

 DAP_CREATE
 If the file already exists, this flag has no effect
 unless the DAP_EXCLUSIVE bit is also set, in which
 case the open will fail with DAP_ERROR_FILE_EXISTS.
 Otherwise the file is created.

 DAP_UNLINKED
 Valid only in combination with the DAP_CREATE flag,
 this bit indicates that the file should be created
 in ’unlinked’ mode, meaning that it will not be
 immediately made visible in the DAFS name space.
 The resulting file handle must be used with dap_flink()
 to provide a name and force visibility, else the
 file will be silently deleted when the handle is
 closed.

 DAP_EXCLUSIVE
 Valid only in combination with the DAP_CREATE flag,
 this bit forces an error if the requested file
 already exists (avoiding the possibility of
 inadvertently sharing this file with another DAFS
 client due to dueling creation attempts).

 DAP_APPEND
 If set, all write I/O is appended to the end of
 the file; read operations are not affected.
 Note that append-mode writes larger than
 dap_filesys_desc.dap_max_append bytes may fail
 without any data having been written. The minimum
 supported append size will be at least 64KB.
 NB: this flag has no effect upon dap_async_listio().

 DAP_TRUNCATE
 If the file exists, and the file is successfully opened
 with the DAP_WRITE bit set its length is truncated to 0.

 DAP_NONBLOCK
 If this flag is set, attempts to initiate asynchronous
 I/O that would delay the calling thread return
 DAP_ERROR_WOULD_BLOCK; if this flag is not set,
 attempts to initiate asynchronous I/O may block as
 necessary due to issues of resource exhaustion or
 transport flow control.
 NB: this flag has no effect upon dap_async_listio().

 DAP_SEQUENTIAL
 This bit flag is a hint to the DAFS provider that
 the application expects its access to the file
 being opened to be sequential.

 DAP_SEQ_REVERSE
 This hint is like DAP_SEQUENTIAL, but in reverse
 order.

 DAP_RANDOM
 This bit flag is a hint to the DAFS provider that
 the application expects its access to the file
 being opened to be random.

 DAP_BUFFERED
 This bit flag allows the DAFS server latitude in
 scheduling disk operations by allowing the server
 to buffer write data and other modifications. It
 may decrease response latency, but necessitates

man_pages.txt Sat Nov 17 16:19:09 2001 97

 the use of dap_fsync() by applications. The default
 behavior is that writes are unbuffered (so no use of
 dap_fsync() is necessary).

 DAP_SHAREKEY
 This bit flag indicates that the share_key
 parameter is intended to be used to control
 access to the target file. If this bit is off,
 the share_key parameter will be ignored.

 DAP_SHARE_DENY_RD
 DAP_SHARE_DENY_WR
 DAP_SHARE_DENY_BOTH
 These bits flags indicate that values used to
 control shared access by denying other clients the
 ability to read, write, or both. See ’Extended
 Sharing Semantics’ below for the behavioral details.
 Not all combinations are valid; each of the parameters
 may be set to RD, WR, or BOTH.

 DAP_NO_DELETE
 This bit indicates that deletions are to be denied
 while this file handle is held open.

 mode is the creation mode of the file. These bits specify
 the permissions of the file being created, POSIX style.
 On non-POSIX-compatible systems these bits may be ignored
 or treated differently.

 file_handle is a pointer to a DAP_FILE_HANDLE which upon
 successful return, will contain a handle to the requested
 file, useful for performing I/O.

 share_key is the shared key bit pattern used to control clustered
 access to the file being opened, iff DAP_SHAREKEY is set in flags.
 See ’Extended Sharing Semantics’ below for the behavioral details.

Returns

 Returns zero on success. Otherwise returns one of the error values
 listed below. The file handle resulting from this call is
 contained in the handle pointed to by file_handle.

Extended Sharing Semantics

 The share_key reservation is provided to aid a clustered
 application to detect rogue instances that are trying to perform
 conflicting access to a file. This reservation allows a clustered
 application to have all components of a cluster instance share
 a reservation. This is in addition to the NFSv4-style share
 semantics, which provide the ability to deny other clients
 read access, write access, or both.

 The following pseudo-code describes the algorithm implemented:

 if ((request.access & file_state.share_deny) ||
 (request.share_deny & file_state.access)) {
 /*
 * NFS-style failure
 */
 return(DAP_ERROR_DENIED);

 } else if ((flags & DAP_SHAREKEY) &&
 file_state.flags & DAP_SHAREKEY) {
 /*

man_pages.txt Sat Nov 17 16:19:09 2001 98

 * Neither sharekey bit is cleared, so
 * check the sharekeys
 */
 if (share_key != file_state.share_key)
 return(DAP_ERROR_KEY_MISMATCH);
 else
 file_state.share_key_reference_count++;
 }

 The dap_close_file() interface decrements
 file_state.share_key_reference_count if a share key is held.
 When the count goes to zero, the DAP_SHAREKEY bit is cleared,
 and the shared key, access, and deny fields are set to zero.

See Also

 Use dap_async_read_link() to open and read a symbolic link.

 Use dap_flink() to link a file opened in ’unlinked’ state
 to a pathname so that it will be visible to other clients.
 An open file which is never linked to a pathname becomes
 irretrievably lost should the application close the handle,
 whether through deliberate action or error.

Errors

 DAP_ERROR_INVALID_DIR_HANDLE
 dir_handle isn’t a valid directory handle.

 DAP_ERROR_INVALID_CRED_HANDLE
 The credential handle was invalid.

 DAP_ERROR_PERM
 The credential supplied was not sufficient to
 allow the requested operation.

 DAP_ERROR_FILE_EXISTS
 Request to exclusively create file was made (flags
 DAP_EXCLUSIVE and DAP_CREATE), but file already exists.

 DAP_ERROR_DIRECTORY
 The path refers to a directory, not a file.

 DAP_ERROR_ACCESS
 The supplied credential does not allow access
 to the path requested.

 DAP_ERROR_INVALID_FLAGS
 An invalid combination of flag options was requested,
 or the feature is not supported.

 DAP_ERROR_TRANSPORT_FAILURE
 A catastrophic and unrecoverable transport failure
 has occurred.

 DAP_ERROR_NOT_SUPPORTED
 extended sharing semantics are not supported by
 the server holding the indicated file.

 DAP_ERROR_DENIED
 extended sharing failure due to NFSv4-style
 share_access and share_deny conflict.

 DAP_ERROR_LOOP
 Too many symbolic links were encountered in

man_pages.txt Sat Nov 17 16:19:09 2001 99

 translating the path.

 DAP_ERROR_UNKNOWN_LOCATION
 The location for the target file cannot be
 found in the DAFS name service.

 DAP_ERROR_UNKNOWN_SERVER
 The server containing the target file was located
 by the DAFS name service, but cannot be resolved to
 a transport address.

 DAP_ERROR_UNREACHABLE
 The server containing the target file cannot be
 reached. This could be temporary (a broken cable)
 or permanent (a configuration error).

 DAP_ERROR_UNKNOWN_PATH
 The path provided does not resolve to a DAFS server.

 DAP_ERROR_PATH
 One of the components in the path does not exist.

 DAP_ERROR_NAMETOOLONG
 The path name exceeds the maximum length supported.

 DAP_ERROR_NOT_DIRECTORY
 A pathname component is not a directory.

 DAP_ERROR_KEY_MISMATCH
 extended sharing failure due to share_key conflict.

 Other DAP_ERROR values may also be returned.

man_pages.txt Sat Nov 17 16:19:09 2001 100

dap_open_nattr

 Open the named attribute associated with a file system object.

DAP_ERROR
dap_open_nattr(
 DAP_DIRECTORY_HANDLE nattr_dir_handle,
 DAP_CRED_HANDLE cred_handle,
 const DAP_CHAR *attr_name,
 DAP_FLAGS flags,
 DAP_FILE_HANDLE *file_handle);

Description

 This routine opens the named attribute indicated by attr_name,
 contained in the named attribute directory indicated by
 nattr_dir_handle, which was obtained from a successful
 call to dap_open_dir() with the DAP_NATTR_DIR flag.

 The contents of the named attribute may then be read using
 dap_async_dap_async_read() upon the handle returned by this
 routine.

 The dap_close_file() routine is the inverse of this function.

Arguments

 nattr_dir_handle is a non-NULL directory handle indicating
 a named attribute directory, obtained from a successful
 call to dap_open_dir() using the DAP_NATTR_DIR flag.

 cred_handle is an optional credential handle obtained with
 the dap_create_credential() routine. If NULL is supplied,
 the provider will use default credentials if such exist.

 attr_name is the name of the attribute to be opened
 and read or written.

 flags specifies the type of access to the attribute. An
 application can obtain read access, write access, or
 read/write access qualified by other flags bitwise or-ed
 together. Undefined flag bits must be zero. This parameter
 must include at least one of the following values:

 DAP_READ
 Open the named attribute for reading.

 DAP_WRITE
 Open the named attribute for writing.

 DAP_READ_WRITE
 Open the named attribute for both reading and writing
 (shorthand for ’DAP_READ | DAP_WRITE’).

 Qualifier flags which are bitwise or-ed to the above are:

 DAP_CREATE
 If the named attribute already exists, this flag
 has no effect unless the DAP_EXCLUSIVE bit is also
 set, in which case the open will fail with
 DAP_ERROR_FILE_EXISTS. Otherwise the named
 attribute is created.

man_pages.txt Sat Nov 17 16:19:09 2001 101

 DAP_EXCLUSIVE
 If the DAP_CREATE bit is not also set, this flag
 has no effect

 DAP_APPEND
 If set, all write I/O is appended to the end of
 the named attribute; read operations are not affected.
 Note that append-mode writes larger than
 dap_filesys_desc.dap_max_append bytes may fail
 without any data having been written. The minimum
 supported append size will be at least 64KB.
 NB: this flag has no effect upon dap_async_listio().

 DAP_TRUNCATE
 If the attribute exists, and it is successfully opened
 with the DAP_WRITE bit set its contents are truncated
 to be zero length.

 DAP_NONBLOCK
 If this flag is set, attempts to initiate asynchronous
 I/O that would delay the calling thread return
 DAP_ERROR_WOULD_BLOCK; if this flag is not set, attempts
 to initiate asynchronous I/O may block as necessary
 due to issues of resource exhaustion or flow control.
 NB: this flag has no effect upon dap_async_listio().

 file_handle is a pointer to a DAP_FILE_HANDLE which upon
 successful return, will contain a handle to the requested
 named attribute, useful for reading (or writing) its contents.

Returns

 Returns zero on success. Otherwise returns one of the error values
 listed below.

Errors

 DAP_ERROR_INVALID_DIR_HANDLE
 nattr_dir_handle isn’t a valid named attribute
 directory handle.

 DAP_ERROR_INVALID_CRED_HANDLE
 The credential handle was invalid.

 DAP_ERROR_PERM
 The credential supplied was not sufficient to
 allow the requested operation.

 Other errors are reflected in the io_error field of the
 DAP_IO_RESULT structure:

 DAP_ERROR_FILE_EXISTS
 Request to exclusively create the attribute was
 made (flags DAP_EXCLUSIVE and DAP_CREATE), but
 it already exists.

 DAP_ERROR_ACCESS
 The supplied credential does not allow access
 to the attribute requested.

 DAP_ERROR_INVALID_FLAGS
 The server does not support atomic append mode, and
 DAP_APPEND was specified in the flags.

 DAP_ERROR_INVALID_NATTR

man_pages.txt Sat Nov 17 16:19:09 2001 102

 The named attribute does not exist, or the name
 is invalid, possibly due to a server-specific
 limit in length or character set.

 DAP_ERROR_TRANSPORT_FAILURE
 A catastrophic and unrecoverable transport failure
 has occurred.

 Other DAP_ERROR values may also be returned.

man_pages.txt Sat Nov 17 16:19:09 2001 103

dap_read

 Synchronous file read operation.

DAP_ERROR
dap_read(
 DAP_FILE_HANDLE file_handle,
 DAP_OFFSET file_offset,
 DAP_COUNT io_count,
 const DAP_MEM_DESC *mem_desc,
 DAP_LENGTH *done_count);

Description

 Initiates one read operation, returning control upon
 completion. An attempt is made to read data from the file
 referenced by the file handle at an offset of file_offset
 into the buffer or buffers indicated by mem_desc.

 The number of bytes read is returned in the variable
 pointed to by done_count.

Arguments

 file_handle is a DAFS file handle as returned by the
 dap_open_file() or dap_open_nattr() calls.

 file_offset is the offset in the file from which to read data.

 io_count is the number of sequential DAP_MEM_DESC structures,
 and must be greater than zero.

 mem_desc is pointer to a (vector of) descriptor(s) for the
 I/O operation. Each entry in the vector contains:

 dap_mem_handle - a DAFS memory handle that is associated
 with the buffer pointer and length. If
 DAP_NULL_MEM_HANDLE is supplied, the provider will
 register and bind the memory on the fly; it may cache
 these mappings to speed later operations.

 dap_bufferp - a buffer pointer to somewhere within
 the registered memory region referred to by the
 DAFS memory handle.

 dap_buffer_len - the length in bytes of the buffer.

 done_count points to a variable which upon successful
 return contains the number of bytes transferred.

Returns

 Returns zero on success, with the number of bytes read
 being returned in the variable pointed to by done_count.
 Otherwise, one of the error values below may be returned.

Errors

 DAP_ERROR_INVALID_FILE_HANDLE
 file_handle isn’t a valid DAFS file object.

 DAP_ERROR_INVALID_MEM_HANDLE
 Some entry in the mem_desc has an invalid registered

man_pages.txt Sat Nov 17 16:19:09 2001 104

 memory handle.

 DAP_ERROR_BAD_ARG
 The io_count was less than or equal to zero.

 DAP_ERROR_UNREGISTERED_MEM
 Some entry in the DAP_MEM_DESC is not valid. Either
 the dap_bufferp is not within a valid registered
 memory virtual region, or the end of the buffer
 extends beyond the memory region referred to by
 the memory handle, or a NULL dap_mem_handle was
 given and the Provider was unable to register the
 memory region on the fly.

 DAP_ERROR_IO_OVERLAP
 This request attempts to write to an area that
 overlaps a pending write request, possibly leading
 to undefined results due to the lack of ordering
 guarantees among simultaneous pending I/O requests.

 DAP_ERROR_IO
 There was a hard and unrecoverable media (disk) error.

 DAP_ERROR_TRANSPORT_FAILURE
 A catastrophic and unrecoverable transport failure
 has occurred.

 Other DAP_ERROR values may also be returned.

man_pages.txt Sat Nov 17 16:19:09 2001 105

dap_read_dir

 Read some number of directory entries, synchronously.

DAP_ERROR
dap_read_dir(
 DAP_DIRECTORY_HANDLE dir_handle,
 DAP_OFFSET cookie,
 DAP_OPAQUE cookie_verifier,
 DAP_MEM_HANDLE mem_handle,
 DAP_LENGTH size,
 DAP_READDIR_RESULT *resultp);

Description

 This routine reads some number of entries from the directory
 indicated by dir_handle, synchronously. The application
 provides some number of bytes of (registered) memory and
 a cookie of zero to begin reading a directory. The provider
 will return a DAP_READDIR_RESULT structure, which contains
 a cookie verified (see below), a flag indicating when the
 last item has been read, the number of items read, and a
 vector of DAP_DIRENTRY structures containing the actual
 directory data. The directory data consists of a number
 of fixed-size DAP_DIRENTRY structures, each containing the
 DAP_FILETYPE of the file system object, a pointer to its
 NUL-terminated name and an opaque cookie to be passed to
 a subsequent call to dap_async_read_dir() et al. to access
 the remaining directory entries.

 There are no further entries to be read from the directory
 indicated by dir_handle when the dap_end_flag is set in
 the DAP_READDIR_RESULT structure.

Arguments

 dir_handle is a DAFS directory handle returned from the
 dap_open_dir() call, and indicates the directory
 which is to be read.

 cookie is a value that represents where the operation should
 start within the directory. A value of 0 (zero) for the
 cookie is used to start reading at the beginning of the
 directory. For subsequent requests, the caller specifies
 a cookie value that is provided by the server in response
 to a previous request
 (dap_readdir_result.dap_entry[index].dap_direntry_cookie).

 cookie_verifier should be set to 0 (zero) when the cookie
 value is 0 (zero) on the first directory read. On subsequent
 requests, it should be a cookieverf as returned by the
 server (dap_readdir_result.dap_cookiev). The cookieverf
 must match that returned by the read operation in which
 the cookie was acquired.

 mem_handle is a DAFS memory handle that is associated with
 the application buffer pointed to by resultp, and may be
 NULL.

 size is the length in bytes of the application buffer
 pointed to by resultp.

 resultp points to the application buffer, a variable-size

man_pages.txt Sat Nov 17 16:19:09 2001 106

 DAP_READDIR_RESULT structure. Upon successful completion,
 this contains:

 dap_cookiev - the cookie verifier returned by the server

 dap_end_flag - set to non-zero when the last entry in
 the directory has been read.

 dap_num_entries - the number of valid entries in the
 variable-size dap_entry array.

 dap_entry - the output array of DAP_DIRENTRY structures,
 containing dap_num_entries valid members. Each contains:

 dap_direntry_type - indicating the DAP_FILETYPE of
 this entry.

 dap_direntry_cookie - an opaque cookie to be handed
 to a subsequent call to any of the directory reading
 routines in order to obtain the next DAP_DIRENTRY.

 dap_direntry_name - a pointer into this
 application-managed storage, to the NUL-terminated
 name of this file system object.

 dap_direntry_attrp - a pointer into this
 application-managed storage, to the requested
 attributes of this file system object. This pointer
 will always be NULL when the attributes are obtained
 with this interface (see dap_async_read_dir2() and
 dap_read_dir2()).

Returns

 Returns zero on success, else one of the error values listed below.

Errors

 DAP_ERROR_INVALID_DIR_HANDLE
 The base_dir_handle given was invalid.

 DAP_ERROR_BADCOOKIE
 The cookier/cookie_verifier pair supplied was invalid.

 DAP_ERROR_BUFFER_TOO_SMALL
 The number of bytes given was not sufficient to hold
 even a single DAP_DIRENTRY and its name. The application
 should try again using a larger buffer.

 DAP_ERROR_TRANSPORT_FAILURE
 A catastrophic and unrecoverable transport failure
 has occurred.

 Other DAP_ERROR values may also be returned.

man_pages.txt Sat Nov 17 16:19:09 2001 107

dap_read_dir2

 Read some number of directory entries and their attributes,
 synchronously.

DAP_ERROR
dap_read_dir2(
 DAP_DIRECTORY_HANDLE dir_handle,
 DAP_OFFSET cookie,
 DAP_OPAQUE cookie_verifier,
 DAP_BITMAP attrs_requested,
 DAP_MEM_HANDLE mem_handle,
 DAP_LENGTH size,
 DAP_READDIR_RESULT *resultp,
 DAP_LENGTH *done_count);

Description

 This routine reads some number of entries and their attributes
 from the directory indicated by dir_handle. The application
 provides some number of bytes of (registered) memory and
 a cookie of zero to begin reading a directory. The provider
 will return a DAP_READDIR_RESULT structure, which contains
 a cookie verified (see below), a flag indicating when the
 last item has been read, the number of items read, and a
 vector of DAP_DIRENTRY structures containing the actual
 directory data. The directory data consists of a number
 of fixed-size DAP_DIRENTRY structures, each containing the
 DAP_FILETYPE of the file system object, a pointer to its
 NUL-terminated name and an opaque cookie to be passed to
 a subsequent call to dap_async_read_dir() et al. to access
 the remaining directory entries.

 There are no further entries to be read from the directory
 indicated by dir_handle when the dap_end_flag is set in
 the DAP_READDIR_RESULT structure.

Arguments

 dir_handle is a DAFS directory handle returned from the
 dap_open_dir() call, and indicates the directory which
 is to be read.

 cookie is a value that represents where the operation should
 start within the directory. A value of 0 (zero) for the
 cookie is used to start reading at the beginning of the
 directory. For subsequent requests, the caller specifies
 a cookie value that is provided by the server in response
 to a previous request
 (dap_readdir_result.dap_entry[index].dap_direntry_cookie).

 cookie_verifier should be set to 0 (zero) when the cookie
 value is 0 (zero) on the first directory read. On subsequent
 requests, it should be a cookieverf as returned by the
 server (dap_readdir_result.dap_cookiev). The cookieverf
 must match that returned by the read operation in which
 the cookie was acquired.

 attrs_requested indicates which attributes are desired;
 bits set to one indicate attributes that are requested.

 mem_handle is a DAFS memory handle that is associated with
 the application buffer pointed to by resultp, and may be

man_pages.txt Sat Nov 17 16:19:09 2001 108

 NULL.

 size is the length in bytes of the application buffer
 pointed to by resultp.

 resultp points to the application buffer, a variable-size
 DAP_READDIR_RESULT structure. Upon successful completion,
 this contains:

 dap_cookiev - the cookie verifier returned by the server

 dap_end_flag - set to non-zero when the last entry in
 the directory has been read.

 dap_num_entries - the number of valid entries in the
 variable-size dap_entry array.

 dap_entry - the output array of DAP_DIRENTRY structures,
 containing dap_num_entries valid members. Each contains:

 dap_direntry_type - indicating the DAP_FILETYPE of
 this entry.

 dap_direntry_cookie - an opaque cookie to be handed
 to a subsequent call to any of the directory reading
 routines in order to obtain the next DAP_DIRENTRY.

 dap_direntry_name - a pointer into this
 application-managed storage, to the NUL-terminated
 name of this file system object.

 dap_direntry_attrp - a pointer into this
 application-managed storage, to the requested
 attributes of this file system object.

Returns

 Returns zero on success, else one of the error values listed below.

Errors

 DAP_ERROR_INVALID_DIR_HANDLE
 The base_dir_handle given was invalid.

 DAP_ERROR_BADCOOKIE
 The cookier/cookie_verifier pair supplied was invalid.

 DAP_ERROR_BUFFER_TOO_SMALL
 The number of bytes given was not sufficient to hold
 even a single DAP_DIRENTRY with attributes and its name.
 The application should try again using a larger buffer.

 DAP_ERROR_IO
 There was a hard and unrecoverable media (disk) error.

 DAP_ERROR_TRANSPORT_FAILURE
 A catastrophic and unrecoverable transport failure
 has occurred.

 Other DAP_ERROR values may also be returned.

man_pages.txt Sat Nov 17 16:19:09 2001 109

dap_read_link

 Read a symbolic link.

DAP_ERROR
dap_read_link(
 DAP_DIRECTORY_HANDLE dir_handle,
 DAP_CRED_HANDLE cred_handle,
 const DAP_CHAR *path,
 DAP_COUNT buffer_size,
 DAP_CHAR *buffer);

Description

 This routine reads the contents of a symbolic link into a
 caller-supplied buffer. The contents will be NUL-terminated,
 and an error is returned if the supplied buffer is too
 small, so buffer_size should be at least one plus the size
 of the link.

 The directory handle and path together indicate the target
 of this call. If an absolute path is given, then the
 directory handle may be NULL; the DAFS name service will
 be used to locate the target object. If the path is
 relative, it is interpreted in relation to the directory
 handle. The DAFS API has no concept of "current working
 directory" since that is not thread-safe.

Arguments

 dir_handle is a DAFS directory object returned by the
 dap_open_dir() call.

 cred_handle is an optional credential handle obtained with
 the dap_create_credential() routine. If NULL is supplied,
 the provider will use default credentials if such exist.

 path is interpreted relative to dir_handle, and must lead
 to a symbolic link (in other words, the final component of
 path must be a symbolic link - if a preceding component is
 a link than it is followed). The contents of the link
 (rather than whatever object it might point to) are read.

 buffer_size indicates the size in bytes of the buffer
 supplied by the caller.

 buffer is a pointer to buffer_size bytes in the caller’s
 memory, where the contents of the link will be placed.
 The bytes read will be NUL-terminated.

Returns

 Returns zero on success, with a NUL-terminated series
 of bytes placed in the memory pointed to by buffer.
 Otherwise, one of the error values below may be returned.

See Also

 dap_get_attr(flags=DAP_STAT_OBJECT_SIZE) may be used to
 determine the number of bytes to be read from the link.

Errors

man_pages.txt Sat Nov 17 16:19:09 2001 110

 DAP_ERROR_INVALID_DIR_HANDLE
 The directory handle was invalid.

 DAP_ERROR_BUFFER_TOO_SMALL,
 The buffer supplied was insufficient to hold the
 contents of the link. Use dap_get_attr() to
 determine the necessary size and try again.

 DAP_ERROR_ACCESS
 The supplied credential does not allow access
 to the path requested.

 DAP_ERROR_LOOP
 Too many symbolic links were encountered in
 translating the path.

 DAP_ERROR_UNKNOWN_LOCATION
 The location for the target file cannot be
 found in the DAFS name service.

 DAP_ERROR_UNKNOWN_SERVER
 The server containing the target file was located
 by the DAFS name service, but cannot be resolved to
 a transport address.

 DAP_ERROR_UNREACHABLE
 The server containing the target file cannot be
 reached. This could be temporary (a broken cable)
 or permanent (a configuration error).

 DAP_ERROR_UNKNOWN_PATH
 The path provided does not resolve to a DAFS server.

 DAP_ERROR_PATH
 One of the components in the path does not exist.

 DAP_ERROR_NAMETOOLONG
 The path name exceeds the maximum length supported.

 DAP_ERROR_NOT_DIRECTORY
 A pathname component is not a directory.

 DAP_ERROR_IO
 There was a hard and unrecoverable media (disk) error.

 DAP_ERROR_TRANSPORT_FAILURE
 A catastrophic and unrecoverable transport failure
 has occurred.

 Other DAP_ERROR values may also be returned.

man_pages.txt Sat Nov 17 16:19:09 2001 111

dap_register_mem

 Registers a memory region with the DAFS library.

DAP_ERROR
dap_register_mem(
 DAP_PVOID buffer,
 DAP_LENGTH length,
 DAP_MEM_HANDLE *mem_handle);

Description

 This routine registers a region of the caller’s address
 space with the DAFS provider returning a memory handle
 to be used when initiating I/O operations.

Arguments

 buffer is a pointer to the memory buffer.

 length is the size in bytes of the buffer.

 mem_handle is a pointer to a DAP_MEM_HANDLE to be returned
 on successful return. This handle is used to identify the
 underlying memory when initiating I/O operations.

Returns

 Returns zero on success. Otherwise returns one of the error values
 listed below.

See Also
 dap_deregister_mem() is the inverse of this operation.

Errors

 DAP_ERROR_NO_RESOURCES
 Insufficient resources exist to complete this operation.

 DAP_ERROR_INVALID_ADDRESS
 The {buffer, length} pair is invalid, possibly because
 it is not contained within the caller’s accessible
 virtual address space.

 Other DAP_ERROR values may also be returned.

man_pages.txt Sat Nov 17 16:19:09 2001 112

dap_register_shbuffer

 Register a shared memory region with the DAFS library.

DAP_ERROR
dap_register_shbuffer(
 DAP_PVOID buffer,
 DAP_LENGTH length,
 DAP_SHBUFF_KEY key,
 DAP_FLAGS flags,
 DAP_MEM_HANDLE *mem_handle);

Description

 This routine registers a region of the caller’s address
 space with the DAFS provider, associating the specified
 key with that region of memory, and returning a memory
 handle to be used when initiating I/O operations. This
 region is presumed to be shared (or shareable) between
 client processes. The key is used as a tag for the memory
 region, permitting the DAFS provider to optimize use of
 both provider and transport resources during registrations
 subsequent to the first. The flags allow the caller to
 exclusively associate the specified key with the memory
 region, receiving an error if the key is already in use.

 As with dap_register_mem(), the {buffer, length} pair need
 not be aligned, but subsequent callers of dap_register_shbuffer()
 providing the same key (hence registering the same shared
 region) must provide a buffer that is congruent with that
 given by the first caller. The exact method used to cause
 sharing of the buffer among DAFS clients is dependent on
 the details of the host system, and is the responsibility
 of the caller (e.g.: shmget() and shmat() on UNIX systems).

Arguments

 buffer is a pointer to the memory buffer.

 length is the size in bytes of the buffer.

 key is a DAP_SHBUFF_KEY used to tag the memory buffer.

 flags consists of bit flags used to modify the behavior of
 this routine. Undefined bits must be zero.
 The following flag bits are defined:

 DAP_CREATE
 If the specified key has not been associated with
 a (shared) memory region, this association is made.
 If the key is already in use, this flag has no
 effect unless the DAP_EXCLUSIVE bit is also set,
 in which case the operation will fail with
 DAP_ERROR_FILE_EXISTS.

 DAP_EXCLUSIVE
 Valid only in combination with the DAP_CREATE flag,
 this option forces an error if the requested key
 is already in use (avoiding the possibility of
 inadvertently sharing the memory of another DAFS
 client due to dueling key registration attempts).

 mem_handle is a pointer to a DAP_MEM_HANDLE to be returned

man_pages.txt Sat Nov 17 16:19:09 2001 113

 on successful return. This handle is used to identify the
 underlying memory when initiating I/O operations.

Returns

 Returns zero on success. Otherwise returns one of the error values
 listed below.

See Also
 dap_deregister_mem() is the inverse of dap_register_shbuffer();
 each process must deregister its own memory, and that operation
 will have no effect upon other processes.

 dap_register_mem() performs the same task albeit without
 the potential for optimizing global resource usage.

Errors

 DAP_ERROR_NO_RESOURCES
 Insufficient resources exist to complete this operation.

 DAP_ERROR_INVALID_ADDRESS
 The {buffer, length} pair is invalid, possibly
 because it is not contained within the caller’s
 virtual address space, or is of an unsupported type
 (not obtained through one of the supported
 host-specific methods) or is not congruent with
 the region already associated with the key provided.

 DAP_ERROR_INVALID_KEY
 The key provided is invalid (NULL or not currently
 in use and DAP_CREATE was not specified).

 DAP_ERROR_FILE_EXISTS
 The key is already in use and the caller specified
 flags DAP_EXCLUSIVE and DAP_CREATE, requesting
 exclusive creation of the association between the
 key and the memory region.

 DAP_ERROR_INVALID_FLAGS
 An invalid combination of flag options was requested.

 Other DAP_ERROR values may also be returned.

man_pages.txt Sat Nov 17 16:19:09 2001 114

dap_remove

 Remove a directory entry.

DAP_ERROR
dap_remove(
 DAP_DIRECTORY_HANDLE dir_handle,
 DAP_CRED_HANDLE cred_handle,
 const DAP_CHAR *path);

Description

 This routine removes the directory entry specified by path.

Arguments

 dir_handle is a DAFS directory handle returned by the
 dap_open_dir() call.

 cred_handle is an optional credential handle obtained with
 the dap_create_credential() routine. If NULL is supplied,
 the provider will use default credentials if such exist.

 path is interpreted relative to dir_handle, and must lead
 to a valid file system object. That object must not be a
 non-empty directory. If the final component of path is a
 symbolic link, the link itself is removed, not the object
 that it points to. Otherwise, the directory entry indicated
 by path is removed, and the link count of the underlying
 object is decremented; if the count goes to zero the underlying
 object is removed. If there are any existing references to
 the open file (or directory), the removal is delayed until all
 references to it have been closed.

 This routine will remove a symlink (and not the object
 that the symlink might point to). If dir_handle indicates
 an open named attribute directory, and if path indicates
 a named attribute within that directory, this routine will
 remove the named attribute indicated.

Returns

 Returns zero on success. Otherwise returns one of the error values
 listed below.

Errors

 DAP_ERROR_DENIED
 Deletion of this object is denied because of an
 existing open reference made with DAP_NO_DELETE set.
 See dap_open_file() for DAP_NO_DELETE details.

 DAP_ERROR_INVALID_DIR_HANDLE
 dir_handle isn’t a valid directory handle.

 DAP_ERROR_INVALID_CRED_HANDLE
 The credential handle was invalid.

 DAP_ERROR_PERM
 The credential supplied was not sufficient to
 allow the requested operation.

 DAP_ERROR_NOTEMPTY

man_pages.txt Sat Nov 17 16:19:09 2001 115

 The path refers to a non-empty directory.

 DAP_ERROR_ACCESS
 The supplied credential does not allow access
 to the path requested.

 DAP_ERROR_INVALID_NATTR
 The dir_handle indicates a named attribute directory,
 and path does not indicate a named attribute within
 that directory.

 DAP_ERROR_LOOP
 Too many symbolic links were encountered in
 translating the path.

 DAP_ERROR_UNKNOWN_LOCATION
 The location for the target file cannot be
 found in the DAFS name service.

 DAP_ERROR_UNKNOWN_SERVER
 The server containing the target file was located
 by the DAFS name service, but cannot be resolved to
 a transport address.

 DAP_ERROR_UNREACHABLE
 The server containing the target file cannot be
 reached. This could be temporary (a broken cable)
 or permanent (a configuration error).

 DAP_ERROR_UNKNOWN_PATH
 The path provided does not resolve to a DAFS server.

 DAP_ERROR_PATH
 One of the components in the path does not exist.

 DAP_ERROR_NAMETOOLONG
 The path name exceeds the maximum length supported.

 DAP_ERROR_NOT_DIRECTORY
 A pathname component is not a directory.

 DAP_ERROR_TRANSPORT_FAILURE
 A catastrophic and unrecoverable transport failure
 has occurred.

 Other DAP_ERROR values may also be returned.

man_pages.txt Sat Nov 17 16:19:09 2001 116

dap_rename

 Rename a file system object.

DAP_ERROR
dap_rename(
 DAP_DIRECTORY_HANDLE dir_handle,
 DAP_CRED_HANDLE cred_handle,
 const DAP_CHAR *old_path,
 const DAP_CHAR *new_path);

Description

 This routine renames the object specified by old_path,
 to new_path. Both paths must lie within the same
 file system, as defined by the server.

 The directory handle and paths together indicate the targets
 of this call. If absolute paths are given, then the
 directory handle may be NULL; the DAFS name service will
 be used to locate the target objects. If the paths are
 relative, they are interpreted in relation to the directory
 handle. The DAFS API has no concept of "current working
 directory" since that is not thread-safe.

Arguments

 dir_handle is a DAFS directory handle returned by the
 dap_open_dir() call.

 cred_handle is an optional credential handle obtained with
 the dap_create_credential() routine. If NULL is supplied,
 the provider will use default credentials if such exist.

 old_path indicates the target of this operation, and is
 interpreted relative to dir_handle. If the final component
 of old_path is a symbolic link, the link itself is renamed,
 not the object that it points to.

 new_path indicates the destination path of this renaming,
 and is also interpreted relative to dir_handle. It must
 lie within the same file system as the target, as defined
 by the server, and must exist up to the final component,
 which must be a directory. The final component of new_path
 must not exist.

Returns

 Returns zero on success. Otherwise returns one of the error values
 listed below.

Errors

 DAP_ERROR_DENIED
 Renaming would result in the deletion of the
 existing file system object at new_path, and
 deletion of this object is denied because of an
 existing open reference made with DAP_NO_DELETE set.
 See dap_open_file() for DAP_NO_DELETE details.

 DAP_ERROR_INVALID_DIR_HANDLE
 dir_handle isn’t a valid directory handle.

man_pages.txt Sat Nov 17 16:19:09 2001 117

 DAP_ERROR_INVALID_CRED_HANDLE
 The credential handle was invalid.

 DAP_ERROR_PERM
 The credential supplied was not sufficient to
 allow the requested operation.

 DAP_ERROR_ACCESS
 The supplied credential does not allow access
 to the path requested.

 DAP_ERROR_INVALID_NATTR
 The dir_handle indicates a named attribute directory,
 and old_path does not indicate a valid named attribute,
 or the server does not implement renaming of named
 attributes.

 DAP_ERROR_LOOP
 Too many symbolic links were encountered in
 translating the path.

 DAP_ERROR_UNKNOWN_LOCATION
 The location for the target file cannot be
 found in the DAFS name service.

 DAP_ERROR_UNKNOWN_SERVER
 The server containing the target file was located
 by the DAFS name service, but cannot be resolved to
 a transport address.

 DAP_ERROR_UNREACHABLE
 The server containing the target file cannot be
 reached. This could be temporary (a broken cable)
 or permanent (a configuration error).

 DAP_ERROR_UNKNOWN_PATH
 The path provided does not resolve to a DAFS server.

 DAP_ERROR_PATH
 One of the components in the path does not exist.

 DAP_ERROR_NAMETOOLONG
 The path name exceeds the maximum length supported.

 DAP_ERROR_NOT_DIRECTORY
 A pathname component is not a directory.

 DAP_ERROR_TRANSPORT_FAILURE
 A catastrophic and unrecoverable transport failure
 has occurred.

 Other DAP_ERROR values may also be returned.

man_pages.txt Sat Nov 17 16:19:09 2001 118

dap_set_acl

 Set the access control list of a file system object.

DAP_ERROR
dap_set_acl(
 DAP_DIRECTORY_HANDLE dir_handle,
 DAP_CRED_HANDLE cred_handle,
 const DAP_CHAR *path,
 DAP_FLAGS flags,
 DAP_COUNT num_aces,
 const DAP_ACL_INFO *aces_ptr);

Description

 This routine sets the access control list associated with
 the file system object specified by path. The number of
 access control entries supplied is indicated by num_aces.

 The directory handle and path together indicate the target
 of this call. If an absolute path is given, then the
 directory handle may be NULL; the DAFS name service will
 be used to locate the target object. If the path is
 relative, it is interpreted in relation to the directory
 handle. The DAFS API has no concept of "current working
 directory" since that is not thread-safe.

Arguments

 dir_handle is a DAFS directory handle returned from the
 dap_open_dir() call.

 cred_handle is an optional credential handle obtained with
 the dap_create_credential() routine. If NULL is supplied,
 the provider will use default credentials if such exist.

 path is interpreted relative to dir_handle, and must lead
 to a valid file system object.

 flags consists of bit flags used to modify the behavior of
 this routine. Undefined bits must be zero.
 The following flag bits are defined:

 DAP_NO_FOLLOW
 If the final component of path is a symbolic link,
 this flag indicates that the link itself is the
 target of this operation, rather than whatever
 it might point to. If the final component of path
 is not a symbolic link, this flag is ignored.

 num_aces indicates the number of access control entries
 (of type DAP_ACL_INFO) supplied by the caller. Supplying
 zero truncates the list of access control entries associated
 with the file system object.

 aces_ptr points to an array of DAP_ACL_INFO structures
 containing the access control entries to be set. If
 num_aces is zero, this pointer may be NULL.

Returns

 Returns zero on success. Otherwise returns one of the
 error values listed below.

man_pages.txt Sat Nov 17 16:19:09 2001 119

Errors

 DAP_ERROR_INVALID_DIR_HANDLE
 The base_dir_handle given was invalid.

 DAP_ERROR_INVALID_CRED_HANDLE
 The credential handle was invalid.

 DAP_ERROR_INVALID_ACE
 One of the DAP_ACL_INFO entries contained an invalid
 type, flag, mask, or identity. The ACL has not been
 changed.

 DAP_ERROR_PERM
 The credential supplied was not sufficient to
 allow the requested operation.

 DAP_ERROR_ACCESS
 The supplied credential does not allow access
 to the path requested.

 DAP_ERROR_LOOP
 Too many symbolic links were encountered in
 translating the path.

 DAP_ERROR_UNKNOWN_LOCATION
 The location for the target file cannot be
 found in the DAFS name service.

 DAP_ERROR_UNKNOWN_SERVER
 The server containing the target file was located
 by the DAFS name service, but cannot be resolved to
 a transport address.

 DAP_ERROR_UNREACHABLE
 The server containing the target file cannot be
 reached. This could be temporary (a broken cable)
 or permanent (a configuration error).

 DAP_ERROR_UNKNOWN_PATH
 The path provided does not resolve to a DAFS server.

 DAP_ERROR_PATH
 One of the components in the path does not exist.

 DAP_ERROR_NAMETOOLONG
 The path name exceeds the maximum length supported.

 DAP_ERROR_NOT_DIRECTORY
 A pathname component is not a directory.

 DAP_ERROR_TRANSPORT_FAILURE
 A catastrophic and unrecoverable transport failure
 has occurred.

 Other DAP_ERROR values may also be returned.

man_pages.txt Sat Nov 17 16:19:09 2001 120

dap_set_attr

 Set the attributes of a file system object.

DAP_ERROR
dap_set_attr(
 DAP_DIRECTORY_HANDLE dir_handle,
 DAP_CRED_HANDLE cred_handle,
 const DAP_CHAR *path,
 DAP_FLAGS flags,
 DAP_STAT_DESC *descr_ptr,
 DAP_BITMAP *attrs_changed);

Description

 This routine sets the attribute information for an object,
 specified by path. The attribute information must be
 consistent with the type of the target object. The attributes
 to be changed are specified by setting bits of the valid_attrs
 field of the DAP_STAT_DESC input parameter, and those that
 were actually set are indicated, upon successful return,
 by the bits set in the attrs_changed output parameter (which
 may be fewer than requested).

 The directory handle and path together indicate the target
 of this call. If an absolute path is given, then the
 directory handle may be NULL; the DAFS name service will
 be used to locate the target object. If the path is
 relative, it is interpreted in relation to the directory
 handle. The DAFS API has no concept of "current working
 directory" since that is not thread-safe.

Arguments

 dir_handle is a DAFS directory handle returned from the
 dap_open_dir() call.

 cred_handle is an optional credential handle obtained with
 the dap_create_credential() routine. If NULL is supplied,
 the provider will use default credentials if such exist.

 path is interpreted relative to dir_handle, and must lead
 to a valid file system object.

 flags consists of bit flags used to modify the behavior of
 this routine. Undefined bits must be zero.
 The following flag bits are defined:

 DAP_NO_FOLLOW
 If the final component of path is a symbolic link,
 this flag indicates that the link itself is the
 target of this operation, rather than whatever
 it might point to. If the final component of path
 is not a symbolic link, this flag is ignored.

 descr_ptr points to a DAP_STAT_DESC structure containing
 the attribute information to be set. The valid_attrs field
 indicates which attributes are to be changed. Indirect
 fields, which point to storage that may not be contiguous
 with the DAP_STAT_DESC structure, must be correctly
 initialized if their corresponding bits in descr_ptr->valid_attrs
 are set.

man_pages.txt Sat Nov 17 16:19:09 2001 121

 attrs_changed indicates which attributes were actually changed.
 Note well that this may be a subset of those requested, if some
 are not supported.

Returns

 Returns zero on success, and attrs_changed indicates which
 attributes were actually modified. Otherwise returns one
 of the error values listed below.

Errors

 DAP_ERROR_INVALID_DIR_HANDLE
 The base_dir_handle given was invalid.

 DAP_ERROR_INVALID_CRED_HANDLE
 The credential handle was invalid.

 DAP_ERROR_PERM
 The credential supplied was not sufficient to
 allow the requested operation.

 DAP_ERROR_ACCESS
 The supplied credential does not allow access
 to the path requested.

 DAP_ERROR_LOOP
 Too many symbolic links were encountered in
 translating the path.

 DAP_ERROR_UNKNOWN_LOCATION
 The location for the target file cannot be
 found in the DAFS name service.

 DAP_ERROR_UNKNOWN_SERVER
 The server containing the target file was located
 by the DAFS name service, but cannot be resolved to
 a transport address.

 DAP_ERROR_UNREACHABLE
 The server containing the target file cannot be
 reached. This could be temporary (a broken cable)
 or permanent (a configuration error).

 DAP_ERROR_UNKNOWN_PATH
 The path provided does not resolve to a DAFS server.

 DAP_ERROR_PATH
 One of the components in the path does not exist.

 DAP_ERROR_NAMETOOLONG
 The path name exceeds the maximum length supported.

 DAP_ERROR_NOT_DIRECTORY
 A pathname component is not a directory.

 DAP_ERROR_SYMLINK
 Attempt to perform an unsupported operation on
 a symbolic link.

 DAP_ERROR_INVALID_ATTR
 An invalid or unsupported attribute was specified.

 DAP_ERROR_TRANSPORT_FAILURE
 A catastrophic and unrecoverable transport failure

man_pages.txt Sat Nov 17 16:19:09 2001 122

 has occurred.

 Other DAP_ERROR values may also be returned.

man_pages.txt Sat Nov 17 16:19:09 2001 123

dap_set_fattr

 Set the attributes of a file system object,
 given an open handle to it.

DAP_ERROR
dap_set_fattr(
 DAP_HANDLE some_handle,
 DAP_STAT_DESC *descr_ptr,
 DAP_BITMAP *attrs_changed);

Description

 This routine sets the attribute information for an object,
 specified by path. The attribute information must be
 consistent with the type of the target object. The attributes
 to be changed are specified by setting bits of the valid_attrs
 field of the DAP_STAT_DESC input parameter, and those that
 were actually set are indicated, upon successful return,
 by the bits set in the attrs_changed output parameter (which
 may be fewer than requested).

Arguments

 some_handle is a valid handle to a file or directory,
 obtained from, for example, dap_open_dir() or dap_open_file().

 descr_ptr points to a DAP_STAT_DESC structure containing
 the attribute information to be set. The valid_attrs field
 indicates which attributes are to be changed. Indirect
 fields, which point to storage that may not be contiguous
 with the DAP_STAT_DESC structure, must be correctly
 initialized if their corresponding bits in descr_ptr->valid_attrs
 are set.

 attrs_changed indicates which attributes were actually changed.
 Note well that this may be a subset of those requested, if some
 are not supported.

Returns

 Returns zero on success, and attrs_changed indicates which
 attributes were actually modified. Otherwise returns one
 of the error values listed below.

Errors

 DAP_ERROR_INVALID_DIR_HANDLE
 The base_dir_handle given was invalid.

 DAP_ERROR_INVALID_CRED_HANDLE
 The credential handle was invalid.

 DAP_ERROR_PERM
 The credential supplied was not sufficient to
 allow the requested operation.

 DAP_ERROR_ACCESS
 The supplied credential does not allow access
 to the path requested.

 DAP_ERROR_SYMLINK
 Attempt to perform an unsupported operation on

man_pages.txt Sat Nov 17 16:19:09 2001 124

 a symbolic link.

 DAP_ERROR_INVALID_ATTR
 An invalid or unsupported attribute was specified.

 DAP_ERROR_TRANSPORT_FAILURE
 A catastrophic and unrecoverable transport failure
 has occurred.

 Other DAP_ERROR values may also be returned.

man_pages.txt Sat Nov 17 16:19:09 2001 125

dap_set_fenceID

 Set the caller’s fencing ID.

DAP_ERROR
dap_set_fenceID(
 const DAP_CHAR *fence_ID);

Description

 This routine sets the fencing ID associated with the caller,
 and must be called prior to opening any files (similarly
 to setting up the authentication callback functions). The
 fencing ID, once set, may not be changed.

 Cooperating clients begin by registering the single fencing
 ID (an arbitrary string) which identifies them. Fencing
 lists are attached to file systems and file system objects,
 and indicate those clients that are to be allowed access.
 Manipulating those fencing lists then provides cooperating
 clients the ability to revoke a particular client’s access.

Arguments

 fence_ID points to the fencing ID (an arbitrary NUL-terminated
 string) used to identify the caller.

Returns

 Returns zero on success. Otherwise returns one of the error values
 listed below.

See Also

 dap_get_fencelist(), dap_set_fencelist()

Errors

 DAP_ERROR_BAD_ARG
 The fencing ID supplied is not NULL and is not
 valid (perhaps containing invalid characters
 or being of zero length).

 DAP_ERROR_NOT_SUPPORTED
 Fencing is not supported.

 Other DAP_ERROR values may also be returned.

man_pages.txt Sat Nov 17 16:19:09 2001 126

dap_set_fencelist

 Set the fencing list of a file or file system.

DAP_ERROR
dap_set_fencelist(
 DAP_DIRECTORY_HANDLE dir_handle,
 DAP_CRED_HANDLE cred_handle,
 const DAP_CHAR *path,
 DAP_FLAGS flags,
 DAP_FENCELIST_UPDATE action,
 DAP_COUNT num_fence_ids,
 DAP_CHAR * const fence_ids_ptr[]);

Description

 This routine sets the access control list associated with
 the file system object specified by path. The number of
 fencing IDs supplied is indicated by num_fence_ids.

 Cooperating clients begin by registering the single fencing
 ID (an arbitrary string) which identifies them. Fencing
 lists are attached to file systems and file system objects,
 and indicate those clients that are to be allowed access.
 Manipulating those fencing lists then provides cooperating
 clients the ability to revoke an errant client’s access.

 The directory handle and path together indicate the target
 of this call. If an absolute path is given, then the
 directory handle may be NULL; the DAFS name service will
 be used to locate the target object. If the path is
 relative, it is interpreted in relation to the directory
 handle. The DAFS API has no concept of "current working
 directory" since that is not thread-safe.

 The ability to set the fencing list for a file system
 object is reserved to the owner of the object or a trusted
 client, while the ability to set the fencing list for a
 file system is reserved to trusted clients.

Arguments

 dir_handle is a DAFS directory handle returned from the
 dap_open_dir() call.

 cred_handle is an optional credential handle obtained with
 the dap_create_credential() routine. If NULL is supplied,
 the provider will use default credentials if such exist.

 path is interpreted relative to dir_handle, and must lead
 to a valid file system object.

 flags consists of bit flags used to modify the behavior of
 this routine. Undefined bits must be zero.
 The following flag bits are defined:

 DAP_FILESYSTEM
 If this bit is set, the fencelist for the file
 system underlying path is to be set.

 DAP_NO_FOLLOW
 If the final component of path is a symbolic link,
 this flag indicates that the link itself is the

man_pages.txt Sat Nov 17 16:19:09 2001 127

 target of this operation, rather than whatever
 it might point to. If the final component of path
 is not a symbolic link, this flag is ignored.

 action indicates the operation intended, and may be one of:

 DAP_FENCE_APPEND
 This action indicates that the supplied list of
 fencing IDs is to be added (appended) to the
 existing list, if any.

 DAP_FENCE_REPLACE
 This action indicates that the supplied list of
 fencing IDs is to be used to overwrite, or replace,
 the existing list, if any, associating a completely
 new list with the indicated file or file system.

 DAP_FENCE_REMOVE
 This action indicates that the supplied list of
 fencing IDs is to be removed from the existing
 list.

 When fencing IDs are removed from a file system or
 file system object, whether by DAP_FENCE_REPLACE
 or DAP_FENCE_REMOVE operations, all in-progress
 I/O to that file system or object from the clients
 associated with the just-denied fencing IDs will
 be drained (either aborted or completed) and further
 attempts at access by those clients will fail.

 num_fence_ids indicates the number of pointers to fencing
 IDs (which are arbitrary NUL-terminated strings) being
 supplied by the caller. Supplying zero truncates the list
 of fencing IDs associated with the file system object.

 fence_ids_ptr points to an array of pointers to fencing IDs
 (arbitrary NUL-terminated strings) to be associated with
 the file system or file system object indicated by path.
 If num_fence_ids is zero, this pointer may be NULL.

Returns

 Returns zero on success. Otherwise returns one of the
 error values listed below.

See Also

 dap_set_fenceID(), dap_get_fencelist()

Errors

 DAP_ERROR_INVALID_DIR_HANDLE
 The base_dir_handle given was invalid.

 DAP_ERROR_INVALID_CRED_HANDLE
 The credential handle was invalid.

 DAP_ERROR_PERM
 The credential supplied was not sufficient to
 allow the requested operation.

 DAP_ERROR_ACCESS
 The supplied credential does not allow access
 to the path requested.

man_pages.txt Sat Nov 17 16:19:09 2001 128

 DAP_ERROR_BAD_ARG
 The opcode is not one of the known values.

 DAP_ERROR_LOOP
 Too many symbolic links were encountered in
 translating the path.

 DAP_ERROR_UNKNOWN_LOCATION
 The location for the target file cannot be
 found in the DAFS name service.

 DAP_ERROR_UNKNOWN_SERVER
 The server containing the target file was located
 by the DAFS name service, but cannot be resolved to
 a transport address.

 DAP_ERROR_UNREACHABLE
 The server containing the target file cannot be
 reached. This could be temporary (a broken cable)
 or permanent (a configuration error).

 DAP_ERROR_UNKNOWN_PATH
 The path provided does not resolve to a DAFS server.

 DAP_ERROR_PATH
 One of the components in the path does not exist.

 DAP_ERROR_NAMETOOLONG
 The path name exceeds the maximum length supported.

 DAP_ERROR_NOT_DIRECTORY
 A pathname component is not a directory.

 DAP_ERROR_NOT_SUPPORTED
 Fencing is not supported.

 DAP_ERROR_TRANSPORT_FAILURE
 A catastrophic and unrecoverable transport failure
 has occurred.

 Other DAP_ERROR values may also be returned.

man_pages.txt Sat Nov 17 16:19:09 2001 129

dap_strerror

 Convert a DAFS error return to a printable string

const char *
dap_strerror(
 DAP_ERROR error_code);

Description

 The dap_strerror() function accepts a DAFS API error number
 and returns a pointer to the corresponding message string.
 The returned string is not to be modified by the caller.

 If error_code is not a recognized error number, the error
 message string will contain "unknown DAP_ERROR".

Arguments

 error_code is an error return from a DAFS API function.

Returns

 Returns a printable error string in all cases.

Errors

 N/A

man_pages.txt Sat Nov 17 16:19:09 2001 130

dap_symlink

 Create a symbolic link to another file system object.

DAP_ERROR
dap_symlink(
 DAP_DIRECTORY_HANDLE dir_handle,
 DAP_CRED_HANDLE cred_handle,
 const DAP_CHAR *any_path,
 const DAP_CHAR *link_name);

Description

 The dap_symlink() routine creates a symbolic link (link_name)
 to any_path. In other words, link_name is the name of the
 file created, and any_path is the string used in creating
 the symbolic link. The link_name must not exist.

 The directory handle and path (link_name) together indicate
 the target of this call. If an absolute path is given,
 then the directory handle may be NULL; the DAFS name service
 will be used to locate the target object. If the path is
 relative, it is interpreted in relation to the directory
 handle. The DAFS API has no concept of "current working
 directory" since that is not thread-safe.

Arguments

 dir_handle is a DAFS directory handle returned by the
 dap_open_dir() call.

 cred_handle is an optional credential handle obtained with
 the dap_create_credential() routine. If NULL is supplied,
 the provider will use default credentials if such exist.

 any_path is an arbitrary path name.

 link_name is interpreted relative to dir_handle. It must
 not exist, and the caller must have credentials sufficient
 to create it.

Returns

 Returns zero on success. Otherwise returns one of the error values
 listed below.

Errors

 DAP_ERROR_INVALID_DIR_HANDLE
 dir_handle isn’t a valid directory handle.

 DAP_ERROR_INVALID_CRED_HANDLE
 The credential handle was invalid.

 DAP_ERROR_PERM
 The credential supplied was not sufficient to
 allow the requested operation.

 DAP_ERROR_ACCESS
 The supplied credential does not allow access
 to the path requested.

 DAP_ERROR_LOOP

man_pages.txt Sat Nov 17 16:19:09 2001 131

 Too many symbolic links were encountered in
 translating the path.

 DAP_ERROR_UNKNOWN_LOCATION
 The location for the target file cannot be
 found in the DAFS name service.

 DAP_ERROR_UNKNOWN_SERVER
 The server containing the target file was located
 by the DAFS name service, but cannot be resolved to
 a transport address.

 DAP_ERROR_UNREACHABLE
 The server containing the target file cannot be
 reached. This could be temporary (a broken cable)
 or permanent (a configuration error).

 DAP_ERROR_UNKNOWN_PATH
 The path provided does not resolve to a DAFS server.

 DAP_ERROR_PATH
 One of the components in the path does not exist.

 DAP_ERROR_NAMETOOLONG
 The path name exceeds the maximum length supported.

 DAP_ERROR_NOT_DIRECTORY
 A pathname component is not a directory.

 DAP_ERROR_TRANSPORT_FAILURE
 A catastrophic and unrecoverable transport failure
 has occurred.

 Other DAP_ERROR values may also be returned.

man_pages.txt Sat Nov 17 16:19:09 2001 132

dap_unlock_range

 Release an advisory read/write lock on a range of bytes.

DAP_ERROR
dap_unlock_range(
 DAP_FILE_HANDLE file_handle,
 DAP_OFFSET byte_offset,
 DAP_LENGTH byte_length);

Description

 This routine releases a currently held record lock
 for the range of bytes indicated.

 It is implementation dependent whether a client may request
 a lock with one byte range and then unlock a sub-range of
 the initial lock. Likewise, it is implementation dependent
 whether a client may lock two adjacent byte ranges or two
 overlapping byte ranges and then unlock the entire range
 or a subset spanning parts of both prior locking operations.
 The caller must be prepared for DAP_ERROR_LOCK_RANGE to be
 returned in these cases.

Arguments

 file_handle is a DAFS file handle as returned by the
 dap_open_file() or dap_open_nattr() calls.

 byte_offset indicates the first byte of the range to be
 locked. Zero indicates the initial byte.

 byte_length is the number of bytes to be locked, with
 a value of all one bits indicating "everything."

Returns

 Returns zero on success. Otherwise returns one of the error
 values listed below.

Errors

 DAP_ERROR_INVALID_FILE_HANDLE
 file_handle isn’t a valid DAFS file handle.

 DAP_ERROR_LOCK_RANGE
 Unlocking of sub-ranges is not supported.

 DAP_ERROR_BAD_ARG
 An argument was invalid (for example, byte_length
 of zero).

 DAP_ERROR_LEASE_EXPIRED
 The client’s lease on the lock had expired.

 DAP_ERROR_TRANSPORT_FAILURE
 A catastrophic and unrecoverable transport failure
 has occurred.

 Other DAP_ERROR values may also be returned.

man_pages.txt Sat Nov 17 16:19:09 2001 133

dap_write

 File write operation.

DAP_ERROR
dap_write(
 DAP_FILE_HANDLE file_handle,
 DAP_OFFSET file_offset,
 DAP_COUNT io_count,
 const DAP_MEM_DESC *mem_desc,
 DAP_LENGTH *done_count);

Description

 Initiates one write operation, returning control upon
 completion. An attempt is made to write data from the
 buffer or buffers pointed to by mem_desc to the file
 referenced by the file handle at an offset of file_offset.

 The number of bytes read is returned in the variable
 pointed to by done_count.

Arguments

 file_handle is a DAFS file handle as returned by the
 dap_open_file() or dap_open_nattr() calls.

 file_offset is the offset in the file to write the data.
 This parameter is ignored if file_handle was opened with
 the DAP_APPEND option.

 io_count is the number of sequential DAP_MEM_DESC structures,
 and must be greater than zero.

 mem_desc is pointer to a (vector of) descriptor(s) for the
 I/O operation. Each entry in the vector contains:

 dap_mem_handle - a DAFS memory handle that is associated
 with the buffer pointer and length. If
 DAP_NULL_MEM_HANDLE is supplied, the provider will
 register and bind the memory on the fly; it may cache
 these mappings to speed later operations.

 dap_bufferp - a buffer pointer to somewhere within
 the registered memory region referred to by the
 DAFS memory handle.

 dap_buffer_len - the length in bytes of the buffer.

 done_count points to a variable which upon successful
 return contains the number of bytes transferred.

Returns

 Returns zero on success, with the number of bytes read
 being returned in the variable pointed to by done_count.
 Otherwise, one of the error values below may be returned.

Errors

 DAP_ERROR_INVALID_FILE_HANDLE
 file_handle isn’t a valid DAFS file object.

man_pages.txt Sat Nov 17 16:19:09 2001 134

 DAP_ERROR_INVALID_MEM_HANDLE
 Some entry in the mem_desc has an invalid registered
 memory handle.

 DAP_ERROR_BAD_ARG
 The io_count was less than or equal to zero.

 DAP_ERROR_UNREGISTERED_MEM
 Some entry in the DAP_MEM_DESC is not valid. Either
 the dap_bufferp is not within a valid registered
 memory virtual region, or the end of the buffer
 extends beyond the memory region referred to by
 the memory handle, or a NULL dap_mem_handle was
 given and the Provider was unable to register the
 memory region on the fly.

 DAP_ERROR_IO_OVERLAP
 This request attempts to write to an area that
 overlaps a pending write request, possibly leading
 to undefined results due to the lack of ordering
 guarantees among simultaneous pending I/O requests.

 DAP_ERROR_LOCKED
 I/O attempt to a locked region.

 DAP_ERROR_WRITE_TOOBIG
 This operation is being done on a file opened for
 append mode, and the size of the write exceeds
 the maximum for atomic append operations.

 DAP_ERROR_FBIG
 This operation would exceed the maximum size supported,
 or would exceed the resources available on the server.

 DAP_ERROR_DQUOT
 This operation would exceed a resource (quota) limit.

 DAP_ERROR_IO
 There was a hard and unrecoverable media (disk) error.

 DAP_ERROR_NXIO
 There was no such device or address (perhaps hardware
 was taken off-line).

 DAP_ERROR_NODEV
 The operation is not supported by the device (such
 as writing to read-only media).

 DAP_ERROR_TRANSPORT_FAILURE
 A catastrophic and unrecoverable transport failure
 has occurred.

 Other DAP_ERROR values may also be returned.

